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Overconfidence Issues
● Overconfidence to unseen examples 

○ 99.9+% sure for the following predictions

[Nguyen15] A. Nguyen, J. Yosinski, J. Clune: Deep Neural Networks are Easily Fooled: High Confidence Predictions for 
Unrecognizable Images. CVPR 2015



Vulnerability
● Vulnerability to noise

3[Szegedy14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus: Intriguing properties of 
neural networks. ICLR 2014
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Goals
● Confidence calibration

○ Reducing the discrepancy between confidence (score) and expected accuracy
○ Adopting idea of stochastic regularization

CalibratedUncalibrated



Stochastic Regularization
● Regularization by noise: reducing overfitting problem by adding noise 

(randomness) to data or models
○ Noise injection to training data
○ Dropout[Srivastava14]

○ DropConnect[Wan13]

○ Learning with stochastic depth[Huang16]

[Srivastava14] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov: Dropout: a simple way to prevent 
neural networks from overfitting. JMLR 2014
[Wan13] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, R. Fergus. Regularization of neural networks using dropconnect. ICML 2013
[Huang16] G. Huang, Y. Sun, Z. Liu, D. Sedra, K. Q. Weinberger: Deep networks with stochastic depth. ECCV 2016



Stochastic Regularization
● Objective (in classification)

○ Perturbing parameters by element-wise multiplication during training

● Dropout

[Srivastava14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov: Dropout: A Simple Way to Prevent Neural 
Networks from Overfitting. JMLR 2014

where



Stochastic Regularization
● Objective (in classification)

○ Perturbing parameters by element-wise multiplication during training

● Stochastic depth

where

[Huang16] G. Huang, Y. Sun, Z. Liu, D. Sedra, K. Weinberger: Deep Networks with Stochastic Depth. ECCV 2016



Uncertainty in Deep Neural Networks



Bayesian Uncertainty Estimation
● Integrating stochastic regularization techniques for inferences

○ Dropout, stochastic depth, etc.
○ Individual inferences produce different outputs.

● Uncertainty can be measured by multiple stochastic inferences.

[Gal16] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. 
ICML 2016



Bayesian Uncertainty Estimation
● Bayesian interpretation of stochastic regularization

○ Learning objective: maximizing marginal likelihood by estimating posterior

○ Variational approximation (but intractable integration)

○ Variational approximation with Monte Carlo: by sampling 

[Gal16] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. 
ICML 2016



Bayesian Uncertainty Estimation
● Bayesian interpretation of stochastic regularization

○ Variational approximation with Monte Carlo: by sampling

○ Learning with stochastic regularization with weight decay: same objective with 
Gaussian assumption of true and approximated posteriors

● The average prediction and its uncertainty can be computed directly 
from multiple stochastic inferences.

[Gal16] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. 
ICML 2016



Bayesian Uncertainty Estimation
● Integrating stochastic regularization techniques for inferences

○ Dropout, stochastic depth, etc.
○ Individual inferences produce different outputs.

● Uncertainty can be measured by multiple stochastic inferences.

[Gal16] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. 
ICML 2016

The uncertainty of a prediction can be estimated using the variation 
of multiple stochastic inferences.



Empirical Observations



Uncertainty through Stochastic Inferences
● Limitation of the simple uncertainty estimation method by multiple stochastic 

inferences
○ Requires multiple inferences for each example

● Solution
○ Designing a loss function to learn uncertainty
○ Exploiting multiple stochastic inferences results for training
○ Learning a model for the single-shot confidence calibration

● Desired score distribution
○ Confident examples have prediction scores close to one-hot vectors.
○ Uncertain examples produce relatively flat score distributions.

We propose a loss function to make the confidence (the prediction score) 
proportional to the expected accuracy.



Confidence-Integrated Loss
● A naive loss function for accuracy-score calibration

○ A linear combination of two loss terms with respect to ground-truth and uniform 
distribution

○ Blindly augmenting a loss term with a uniform distribution

Accuracy term Confidence term



Confidence-Integrated Loss
● The same loss functions are discussed for different purposes

○ [Pereyra17]: for accuracy improved via regularization
○ [Lee18]: for identifying out-of-distribution examples
○ No attempt to estimate the confidence of predictions

[Pereyra17] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, G. Hinton. Regularizing neural networks by penalizing confident 
output distributions. arXiv 2017
[Lee18] K. Lee, H. Lee, K. Lee, J. Shin. Training confidence- calibrated classifiers for detecting out-of-distribution samples. 
ICLR 2018



Confidence-Integrated Loss
● A simple loss function for accuracy-score calibration

○ All samples have the same weight of the confidence loss term regardless of 
example-specific characteristics.

○ Interpretation of this loss function is very hard.
○ Needs for a global hyper-parameter



Variance-Weighted Confidence-Integrated Loss
● A more sophisticated loss function for accuracy-score calibration

○ An interpolation of two cross-entropy terms
○ The two terms are weighted by the variance of stochastic inferences
○ Generalization of the confidence-integrated loss function

: normalized variance



Variance-Weighted Confidence-Integrated Loss
● A more sophisticated loss function for accuracy-score calibration

○ Motivated by Bayesian interpretation of stochastic regularization and our empirical 
observation

○ No hyper-parameter to balance two terms

: normalized variance



Experiments
● Datasets

○ CIFAR-100
○ Tiny ImageNet

● Architectures
○ ResNet
○ VGG
○ WideResNet
○ DenseNet



Experiments
● Evaluation metrics

○ Classification accuracy
○ Calibration scores

■ Expected Calibration Error (ECE):

■ Maximum Calibration Error (MCE):

■ Negative Log Likelihood (NLL):

■ Brier Score:



Results
● On Tiny ImageNet



Results
● On Tiny ImageNet



Ablation Study
● Calibration performance w.r.t. the number of stochastic inferences during 

training

CIFAR-100 Tiny ImageNet



Ablation Study
● Performance of the models fine-tuned with the VWCI losses 

○ From the uncalibrated pretrained networks 
○ On CIFAR-100
○ About 25% of the additional iterations are sufficient for good calibration.



Temperature Scaling
● A simple confidence calibration technique

○ Optimizes temperature of softmax function
○ Simple to implement and train
○ Does not change prediction results

26
[Guo17] C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger: On Calibration of Modern Neural Networks. ICML 2017



Results
● Comparison with temperature scaling[Guo17]

○ Case 1: using the entire training set for both training and calibration
○ Case 2: using 90% of training set for training and the rest for calibration
○ It may suffers from binning artifacts

[Guo17] C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger. On calibration of modern neural networks. ICML 2017



Summary on Confidence Calibration
● A Bayesian interpretation of generic stochastic regularization techniques with 

multiplicative noise

● A generic framework to calibrate accuracy and confidence (score) of a 
prediction 
○ Through stochastic inferences in deep neural networks
○ Introducing Variance-Weighted Confidence-Integrated (VWCI) loss
○ Capable of estimating prediction uncertainty using a single prediction
○ Supported by empirical observations

● Promising and consistent performance on multiple datasets and stochastic 
inference techniques



Other Works Related to Stochastic Learning
● Regularization by noise

○ Sampling multiple dropout masks
○ Learning with importance weighted 

stochastic gradient
● Interpretation and benefit

○ Improving the lower-bound of 
marginal likelihood by increasing
the number of samples

○ Better accuracy in several domains

[Noh17] H. Noh, T. You, J. Mun, B. Han, Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization. 
NIPS 2017



Other Works Related to Stochastic Learning
● Stochastic online few-shot ensemble learning

○ Preventing correlation of representations obtained from multiple branches
○ Randomly selecting branches for updates

[Han17]B. Han, J. Sim, H. Adam: BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural 
Networks. CVPR 2017



Other Research (in ML Perspective)
● Weakly supervised learning[NIPS2015, CVPR2016, AAAI2017, CVPR2017a, CVPR2018]

● Multi-modal learning[CVPR2016, AAAI2017, ICCV2017, NIPS2017]

● Metric learning[CVPR2017b]

● Multiple choice learning[NeurIPS2018]

● Zero-shot transfer learning[arXiv2018]

● Combinatorial learning
● Meta-learning
● Continual learning
● AutoML


