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Classification Problem
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Feature Map

φ : (x1, x2) 7−→ (x21 , x
2
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Our recipe:

1. Construct a non-linear feature map φ : X → H.

2. Evaluate Dφ = {φ(x1), φ(x2), . . . , φ(xn)}.
3. Solve the learning problem in H using Dφ.
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Kernels

Definition
A function k : X ×X → R is called a kernel on X if there exists a Hilbert
space H and a map φ : X → H such that for all x, x′ ∈ X we have

k(x, x′) = 〈φ(x), φ(x′)〉H.

We call φ a feature map and H a feature space of k.

Example

1. k(x, x′) = (x · x′)2 for x, x′ ∈ R2

I φ(x) = (x2
1 , x

2
2 ,
√
2x1x2)

I H = R3

2. k(x, x′) = (x · x′ + c)m for c > 0, x, x′ ∈ Rd

I dim(H) =
(
d+m
m

)
3. k(x, x′) = exp

(
−γ‖x− x′‖22

)
I H = R∞
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Positive Definite Kernels

Definition (Positive definiteness)
A function k : X × X → R is called positive definite if, for all n ∈ N,
α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X , we have

n∑
i=1

n∑
j=1

αiαjk(xj , xi ) ≥ 0.

Equivalently, we have that a Gram matrix K is positive definite.

Example (Any kernel is positive definite)
Let k be a kernel with feature map φ : X → H, then we have

n∑
i=1

n∑
j=1

αiαjk(xj , xi ) =

〈
n∑

i=1

αiφ(xi ),
n∑

j=1

αjφ(xj)

〉
H

≥ 0.

Positive definiteness is a necessary (and sufficient) condition.
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Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of functions mapping from X into R.

1. A function k : X × X → R is called a reproducing kernel of H if we
have k(·, x) ∈ H for all x ∈ X and the reproducing property

f (x) = 〈f , k(·, x)〉

holds for all f ∈ H and all x ∈ X .

2. The space H is called a reproducing kernel Hilbert space (RKHS)
over X if for all x ∈ X the Dirac functional δx : H → R defined by

δx(f ) := f (x), f ∈ H,

is continuous.

Remark: If ‖fn − f ‖H → 0 for n→∞, then for all x ∈ X , we have

lim
n→∞

fn(x) = f (x)

.
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Reproducing Kernels

Lemma (Reproducing kernels are kernels)
Let H be a Hilbert space over X with a reproducing kernel k. Then H is
an RKHS and is also a feature space of k, where the feature map
φ : X → H is given by

φ(x) = k(·, x), x ∈ X .

We call φ the canonical feature map.

Proof
We fix an x′ ∈ X and write f := k(·, x′). Then, for x ∈ X , the
reproducing property yields

〈φ(x′), φ(x)〉 = 〈k(·, x′), k(·, x)〉 = 〈f , k(·, x)〉 = f (x) = k(x, x′).



11/34

Reproducing Kernels

Lemma (Reproducing kernels are kernels)
Let H be a Hilbert space over X with a reproducing kernel k. Then H is
an RKHS and is also a feature space of k, where the feature map
φ : X → H is given by

φ(x) = k(·, x), x ∈ X .

We call φ the canonical feature map.

Proof
We fix an x′ ∈ X and write f := k(·, x′). Then, for x ∈ X , the
reproducing property yields

〈φ(x′), φ(x)〉 = 〈k(·, x′), k(·, x)〉 = 〈f , k(·, x)〉 = f (x) = k(x, x′).



12/34

Kernels and RKHSs

Theorem (Every RKHS has a unique reproducing kernel)
Let H be an RKHS over X . Then k : X × X → R defined by

k(x, x′) = 〈δx, δx′〉H, x, x′ ∈ X

is the only reproducing kernel of H. Furthermore, if (ei )i∈I is an
orthonormal basis of H, then for all x, x′ ∈ X we have

k(x, x′) =
∑
i∈I

ei (x)ei (x′).

Universal kernels
A continuous kernel k on a compact metric space X is called universal if
the RKHS H of k is dense in C (X ), i.e., for every function g ∈ C (X )
and all ε > 0 there exist an f ∈ H such that

‖f − g‖∞ ≤ ε.



12/34

Kernels and RKHSs

Theorem (Every RKHS has a unique reproducing kernel)
Let H be an RKHS over X . Then k : X × X → R defined by

k(x, x′) = 〈δx, δx′〉H, x, x′ ∈ X

is the only reproducing kernel of H. Furthermore, if (ei )i∈I is an
orthonormal basis of H, then for all x, x′ ∈ X we have

k(x, x′) =
∑
i∈I

ei (x)ei (x′).

Universal kernels
A continuous kernel k on a compact metric space X is called universal if
the RKHS H of k is dense in C (X ), i.e., for every function g ∈ C (X )
and all ε > 0 there exist an f ∈ H such that

‖f − g‖∞ ≤ ε.



13/34

From Points to Measures

Feature space HInput space X

x

y

k(x, ·)
k(y, ·)

f

x 7→ k(·, x) δx 7→
∫
k(·, z)dδx(z)
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Embedding of Marginal Distributions

x

p(x) RKHS H

µP

µQ

P
Q

f

Definition
Let P be a space of all probability measures on a measurable space
(X ,Σ) and H an RKHS endowed with a reproducing kernel
k : X × X → R. A kernel mean embedding is defined by

µ : P → H, P 7→
∫

k(·, x)dP(x).

Remark: For a Dirac measure δx, δx 7→ µ[δx] ≡ x 7→ k(·, x).
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Embedding of Marginal Distributions

x

p(x) RKHS H

µP

µQ

P
Q

f

I If EX∼P[
√
k(X ,X )] <∞, then µP ∈ H and

EX∼P[f (X )] = 〈f , µP〉, f ∈ H.

I The kernel k is said to be characteristic if the map

P 7→ µP

is injective. That is, ‖µP − µQ‖H = 0 if and only if P = Q.
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Kernel Mean Estimation
I Given an i.i.d. sample x1, x2, . . . , xn from P, we can estimate µP by

µ̂P :=
1

n

n∑
i=1

k(xi , ·).

I For each f ∈ H, we have EX∼P̂[f (X )] = 〈f , µ̂P〉.
I Assume that ‖f ‖∞ ≤ 1 for all f ∈ H with ‖f ‖H ≤ 1. W.p.a.l 1− δ,

‖µ̂P − µP‖H ≤ 2

√
Ex∼P[k(x , x)]

n
+

√
2 log 1

δ

n
.

I The convergence happens at a rate Op(n−1/2) which has been shown
to be minimax optimal.1

I In high dimensional setting, we can improve an estimation by
shrinkage estimators:2

µ̂α := αf ∗ + (1− α)µ̂P, f ∗ ∈ H.

1Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
2Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.
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Explicit Representation

What properties are captured by µP?

I k(x , x ′) = 〈x , x ′〉 the first moment of P
I k(x , x ′) = (〈x , x ′〉+ 1)p moments of P up to order p ∈ N
I k(x , x ′) is universal/characteristic all information of P

Moment-generating function
Consider k(x , x ′) = exp(〈x , x ′〉). Then, µP = EX∼P[e〈X ,·〉].

Characteristic function
Consider k(x , y) = ψ(x − y), x , y ∈ Rd where ψ is a positive definite
function. Then,

µP(y) =

∫
ψ(x − y)dP(x) = Λ · P̂

for positive finite measure Λ.
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Application: High-Level Generalization

Learning from Distributions

q KM., Fukumizu, Dinuzzo,

Schölkopf. NIPS 2012.

Group Anomaly Detection

D
ist

rib
utio

n sp
ac

e

In
put s

pac
e

q KM. and Schölkopf, UAI 2013.

Domain
Adaptation/Generalization

training data unseen test data

P2
XYP1

XY

P

PN
XY

...

(Xk, Yk) ... Xk

PX

(Xk, Yk) (Xk, Yk)

k = 1, . . . , nk = 1, . . . , nNk = 1, . . . , n2k = 1, . . . , n1

q KM. et al. ICML 2013;

Zhang, KM. et al. ICML 2013

Cause-Effect Inference

X Y

q Lopez-Paz, KM. et al.

JMLR 2015, ICML 2015.
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Support Measure Machine (SMM)

x 7→ k(·, x) δx 7→
∫
k(·, z)dδx(z) P 7→

∫
k(·, z)dP(z)

Theorem
Under technical assumptions on Ω : [0,+∞)→ R, and a loss function
` : (P × R2)m → R ∪ {+∞}, any f ∈ H minimizing

` (P1, y1,EP1 [f ], . . . ,Pm, ym,EPm [f ]) + Ω (‖f ‖H)

admits a representation of the form

f =
m∑
i=1

αiEx∼Pi [k(x , ·)] =
m∑
i=1

αiµPi .
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Kernel Discrepancy Measure for Distributions

I Maximum mean discrepancy (MMD)

MMD2(P,Q,H) := sup
h∈H,‖h‖≤1

∣∣∣∣∫ h(x)dP(x)−
∫

h(x)dQ(x)

∣∣∣∣

I MMD is an integral probability metric (IPM) and corresponds to
the RKHS distance between mean embeddings.

MMD2(P,Q,H) = ‖µP − µQ‖2H.

I If k is universal, then ‖µP − µQ‖H = 0 if and only if P = Q.

I Given {xi}ni=1 ∼ P and {yj}mj=1 ∼ Q, the empirical MMD is

M̂MD2
u(P,Q,H) =

1

n(n − 1)

n∑
i=1

n∑
j 6=i

k(xi , xj) +
1

m(m − 1)

m∑
i=1

m∑
j 6=i

k(yi , yj)

− 2

nm

n∑
i=1

m∑
j=1

k(xi , yj).
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Generative Adversarial Networks
Learn a deep generative model G via a minimax optimization

min
G

max
D

Ex [logD(x)] + Ez [log(1− D(G (z)))]

where D is a discriminator and z ∼ N (0, σ2I).

random noise z

Gθ(z)

Generator Gθ

real or synthetic?

x or Gθ(z)

Discriminator Dφ

•
•
•••••••

••••
×
×
× ×
××
×××
×××
×

real data
{xi} synthetic data

{Gθ(zi )}

∥∥µ̂X − µ̂Gθ(Z)

∥∥
H is zero?

MMD Test
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Generative Moment Matching Network

I The GAN aims to match two distributions P(X ) and Gθ.

I Generative moment matching network (GMMN) proposed by
Dziugaite et al. (2015) and Li et al. (2015) considers

min
θ

∥∥µX − µGθ(Z)

∥∥2
H = min

θ

∥∥∥∥∫ φ(X )dP(X )−
∫
φ(X̃ )dGθ(X̃ )

∥∥∥∥2
H

= min
θ

{
sup

h∈H,‖h‖≤1

∣∣∣∣∫ h dP−
∫

h dGθ

∣∣∣∣
}

I Many tricks have been proposed to improve the GMMN:
I Optimized kernels and feature extractors (Sutherland et al., 2017; Li

et al., 2017a),
I Gradient regularization (Binkowski et al., 2018; Arbel et al., 2018)
I Repulsive loss (Wang et al., 2019)
I Optimized witness points (Mehrjou et al., 2019)
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From Points to Measures

Embedding of Marginal Distributions

Embedding of Conditional Distributions

Future Directions
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Conditional Distribution P(Y |X )?

X

Y

A collection of distributions PY := {P(Y |X = x) : x ∈ X}.

I For each x ∈ X , we can define an embedding of P(Y |X = x) as

µY |x :=

∫
Y

ϕ(Y ) dP(Y |X = x) = EY |x [ϕ(Y )]

where ϕ : Y → G is a feature map of Y .
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Covariance Operators
I Let H,G be RKHSes on X ,Y with feature maps

φ(x) = k(x , ·), ϕ(y) = `(y , ·).

I Let CXX : H → H and CYX : H → G be the covariance operator on
X and cross-covariance operator from X to Y , i.e.,

CXX =

∫
φ(X )⊗ φ(X ) dP(X ),

CYX =

∫
ϕ(Y )⊗ φ(X ) dP(Y ,X )

I Alternatively, CYX is a unique bounded operator satisfying

〈g , CYX f 〉G = Cov[g(Y ), f (X )].

I If EYX [g(Y )|X = ·] ∈ H for g ∈ G, then

CXXEYX [g(Y )|X = ·] = CXY g .
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Embedding of Conditional Distributions

X

Y

H G
CYXC−1XXk(x , ·)

µY |X=xk(x , ·) CYXC−1XX

y

p(y |x)

P(Y |X = x)

The conditional mean embedding of P(Y |X ) can be defined as

UY |X : H → G, UY |X := CYXC−1XX
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Conditional Mean Embedding

I To fully represent P(Y |X ), we need to perform conditioning and
conditional expectation.

I To represent P(Y |X = x) for x ∈ X , it follows that

EY |x [ϕ(Y ) |X = x ] = UY |Xk(x , ·) = CYXC−1XXk(x , ·) =: µY |x .

I It follows from the reproducing property of G that

EY |x [g(Y ) |X = x ] = 〈µY |x , g〉G

for all g ∈ G.

I In an infinite RKHS, C−1XX does not exists. Hence, we often use

UY |X := CYX (CXX + εI)−1.
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Conditional Mean Estimation

I Given a joint sample (x1, y1), . . . , (xn, yn) from P(X ,Y ), we have

ĈXX =
1

n

n∑
i=1

φ(xi )⊗ φ(xi ), ĈYX =
1

n

n∑
i=1

ϕ(yi )⊗ φ(xi ).

I Then, µY |x for some x ∈ X can be estimated as

µ̂Y |x = ĈYX (ĈXX + εI)−1k(x , ·) = Φ(K + nεIn)−1kx =
n∑

i=1

βiϕ(yi ),

where λ > 0 is a regularization parameter and

Φ = [ϕ(y1), .., ϕ(yn)], Kij = k(xi , xj), kx = [k(x1, x), .., k(xn, x)].

I Under some technical assumptions, µ̂Y |x → µY |x as n→∞.
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Kernel Sum Rule: P(X ) =
∑

Y P(X ,Y )

I By the law of total expectation,

µX = EX [φ(X )] = EY [EX |Y [φ(X )|Y ]]

= EY [UX |Yϕ(Y )] = UX |YEY [ϕ(Y )] = UX |YµY

I Let µ̂Y =
∑m

i=1 αiϕ(ỹi ) and ÛX |Y = ĈXY Ĉ−1YY . Then,

µ̂X = ÛX |Y µ̂Y = ĈXY Ĉ−1YY µ̂Y = Υ(L + nλI )−1L̃α.

where α = (α1, . . . , αm)>, Lij = l(yi , yj), and L̃ij = l(yi , ỹj).

I That is, we have

µ̂X =
n∑

j=1

βjφ(xj)

with β = (L + nλI )−1L̃α.
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Kernel Product Rule: P(X ,Y ) = P(Y |X )P(X )

I We can factorize µXY = EXY [φ(X )⊗ ϕ(Y )] as

EY [EX |Y [φ(X )|Y ]⊗ ϕ(Y )] = UX |YEY [ϕ(Y )⊗ ϕ(Y )]

EX [EY |X [ϕ(Y )|X ]⊗ φ(X )] = UY |XEX [φ(X )⊗ φ(X )]

I Let µ⊗X = EX [φ(X )⊗ φ(X )] and µ⊗Y = EY [ϕ(Y )⊗ ϕ(Y )].

I Then, the product rule becomes

µXY = UX |Yµ⊗Y = UY |Xµ⊗X .

I Alternatively, we may write the above formulation as

CXY = UX |Y CYY and CYX = UY |XCXX

I The kernel sum and product rules can be combined to obtain the
kernel Bayes’ rule.3

3Fukumizu et al. Kernel Bayes’ Rule. JMLR. 2013
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Future Directions

I Representation learning and embedding of distributions

I Kernel methods in deep learning
I MMD-GAN
I Wasserstein autoencoder (WAE)
I Invariant learning in deep neural networks

I Kernel mean estimation in high dimensional setting

I Recovering (conditional) distributions from mean embeddings
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