An Introduction to Hilbert Space Embedding of Probability Measures

Krikamol Muandet

Max Planck Institute for Intelligent Systems Tübingen, Germany

Jeju, South Korea, February 22, 2019

Reference



Kernel Mean Embedding of Distributions: A Review and Beyond M, Fukumizu, Sriperumbudur, and Schölkopf. FnT ML, 2017.

Embedding of Marginal Distributions

Embedding of Conditional Distributions

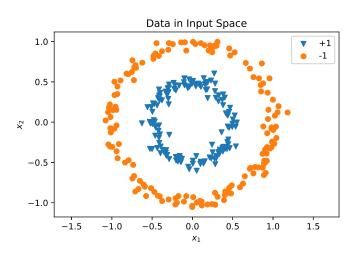
Future Directions

Embedding of Marginal Distributions

Embedding of Conditional Distributions

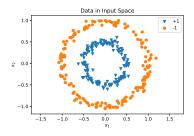
Future Directions

Classification Problem

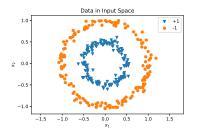


$$\phi : (x_1, x_2) \longmapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

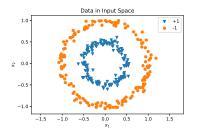
$$\phi : (x_1, x_2) \longmapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

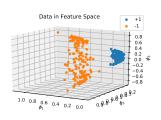


$$\phi : (x_1, x_2) \longmapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

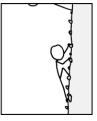


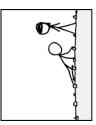
$$\phi : (x_1, x_2) \longmapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

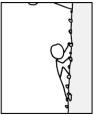


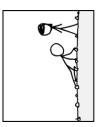


$$\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathbb{R}^3} = (\mathbf{x} \cdot \mathbf{x}')^2$$









Our recipe:

- 1. Construct a non-linear feature map $\phi: \mathcal{X} \to \mathcal{H}$.
- 2. Evaluate $D_{\phi} = \{\phi(x_1), \phi(x_2), \dots, \phi(x_n)\}.$
- 3. Solve the learning problem in \mathcal{H} using D_{ϕ} .

Kernels

Definition

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **kernel** on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a map $\phi: \mathcal{X} \to \mathcal{H}$ such that for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ we have

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}}.$$

We call ϕ a **feature map** and \mathcal{H} a **feature space** of k.

Kernels

Definition

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **kernel** on \mathcal{X} if there exists a Hilbert space \mathcal{H} and a map $\phi: \mathcal{X} \to \mathcal{H}$ such that for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ we have

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}}.$$

We call ϕ a **feature map** and \mathcal{H} a **feature space** of k.

Example

- 1. $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}')^2$ for $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$
 - $\phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ $\bullet \mathcal{H} = \mathbb{R}^3$
- 2. $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + c)^m$ for $c > 0, \mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$
 - $ightharpoonup \dim(\mathcal{H}) = \binom{d+m}{m}$
- 3. $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} \mathbf{x}'||_2^2)$
 - $\mathcal{H} = \mathbb{R}^{\infty}$

Positive Definite Kernels

Definition (Positive definiteness)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **positive definite** if, for all $n \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and all $x_1, \ldots, x_n \in \mathcal{X}$, we have

$$\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) \ge 0.$$

Equivalently, we have that a **Gram** matrix **K** is positive definite.

Positive Definite Kernels

Definition (Positive definiteness)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **positive definite** if, for all $n \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and all $x_1, \ldots, x_n \in \mathcal{X}$, we have

$$\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) \ge 0.$$

Equivalently, we have that a **Gram** matrix **K** is positive definite.

Example (Any kernel is positive definite)

Let k be a kernel with feature map $\phi: \mathcal{X} \to \mathcal{H}$, then we have

$$\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_j, x_i) = \left\langle \sum_{i=1}^n \alpha_i \phi(x_i), \sum_{j=1}^n \alpha_j \phi(x_j) \right\rangle_{\mathcal{H}} \geq 0.$$

Positive definiteness is a necessary (and sufficient) condition.

Let $\mathcal H$ be a Hilbert space of functions mapping from $\mathcal X$ into $\mathbb R$.

Let $\mathcal H$ be a Hilbert space of functions mapping from $\mathcal X$ into $\mathbb R.$

1. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of \mathcal{H} if we have $k(\cdot, x) \in \mathcal{H}$ for all $x \in \mathcal{X}$ and the **reproducing property**

$$f(x) = \langle f, k(\cdot, x) \rangle$$

holds for all $f \in \mathcal{H}$ and all $x \in \mathcal{X}$.

Let $\mathcal H$ be a Hilbert space of functions mapping from $\mathcal X$ into $\mathbb R$.

1. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of \mathcal{H} if we have $k(\cdot, x) \in \mathcal{H}$ for all $x \in \mathcal{X}$ and the **reproducing property**

$$f(x) = \langle f, k(\cdot, x) \rangle$$

holds for all $f \in \mathcal{H}$ and all $x \in \mathcal{X}$.

2. The space \mathcal{H} is called a **reproducing kernel Hilbert space (RKHS)** over \mathcal{X} if for all $x \in \mathcal{X}$ the Dirac functional $\delta_x : \mathcal{H} \to \mathbb{R}$ defined by

$$\delta_{\mathsf{x}}(f) := f(\mathsf{x}), \qquad f \in \mathcal{H},$$

is continuous.

Let $\mathcal H$ be a Hilbert space of functions mapping from $\mathcal X$ into $\mathbb R$.

1. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **reproducing kernel** of \mathcal{H} if we have $k(\cdot, x) \in \mathcal{H}$ for all $x \in \mathcal{X}$ and the **reproducing property**

$$f(x) = \langle f, k(\cdot, x) \rangle$$

holds for all $f \in \mathcal{H}$ and all $x \in \mathcal{X}$.

2. The space \mathcal{H} is called a **reproducing kernel Hilbert space (RKHS)** over \mathcal{X} if for all $x \in \mathcal{X}$ the Dirac functional $\delta_x : \mathcal{H} \to \mathbb{R}$ defined by

$$\delta_{\mathsf{x}}(f) := f(\mathsf{x}), \qquad f \in \mathcal{H},$$

is continuous.

Remark: If $||f_n - f||_{\mathcal{H}} \to 0$ for $n \to \infty$, then for all $x \in \mathcal{X}$, we have

$$\lim_{n\to\infty} f_n(x) = f(x)$$

10/34

Reproducing Kernels

Lemma (Reproducing kernels are kernels)

Let $\mathcal H$ be a Hilbert space over $\mathcal X$ with a reproducing kernel k. Then $\mathcal H$ is an RKHS and is also a feature space of k, where the feature map $\phi:\mathcal X\to\mathcal H$ is given by

$$\phi(x) = k(\cdot, x), \qquad x \in \mathcal{X}.$$

We call ϕ the canonical feature map.

Reproducing Kernels

Lemma (Reproducing kernels are kernels)

Let $\mathcal H$ be a Hilbert space over $\mathcal X$ with a reproducing kernel k. Then $\mathcal H$ is an RKHS and is also a feature space of k, where the feature map $\phi:\mathcal X\to\mathcal H$ is given by

$$\phi(x) = k(\cdot, x), \qquad x \in \mathcal{X}.$$

We call ϕ the canonical feature map.

Proof

We fix an $\mathbf{x}' \in \mathcal{X}$ and write $f := k(\cdot, \mathbf{x}')$. Then, for $\mathbf{x} \in \mathcal{X}$, the reproducing property yields

$$\langle \phi(\mathbf{x}'), \phi(\mathbf{x}) \rangle = \langle k(\cdot, \mathbf{x}'), k(\cdot, \mathbf{x}) \rangle = \langle f, k(\cdot, \mathbf{x}) \rangle = f(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}').$$

Kernels and RKHSs

Theorem (Every RKHS has a unique reproducing kernel)

Let \mathcal{H} be an RKHS over \mathcal{X} . Then $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by

$$k(\mathbf{x}, \mathbf{x}') = \langle \delta_{\mathbf{x}}, \delta_{\mathbf{x}'} \rangle_{\mathcal{H}}, \quad \mathbf{x}, \mathbf{x}' \in \mathcal{X}$$

is the only reproducing kernel of \mathcal{H} . Furthermore, if $(e_i)_{i\in I}$ is an orthonormal basis of \mathcal{H} , then for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ we have

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i \in I} e_i(\mathbf{x}) \overline{e_i(\mathbf{x}')}.$$

Kernels and RKHSs

Theorem (Every RKHS has a unique reproducing kernel)

Let \mathcal{H} be an RKHS over \mathcal{X} . Then $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by

$$k(\mathbf{x}, \mathbf{x}') = \langle \delta_{\mathbf{x}}, \delta_{\mathbf{x}'} \rangle_{\mathcal{H}}, \quad \mathbf{x}, \mathbf{x}' \in \mathcal{X}$$

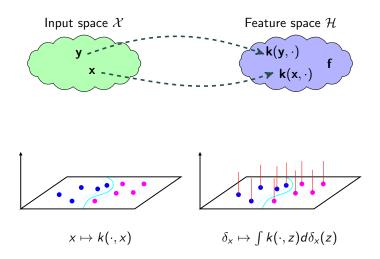
is the only reproducing kernel of \mathcal{H} . Furthermore, if $(e_i)_{i\in I}$ is an orthonormal basis of \mathcal{H} , then for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ we have

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i \in I} e_i(\mathbf{x}) \overline{e_i(\mathbf{x}')}.$$

Universal kernels

A continuous kernel k on a compact metric space $\mathcal X$ is called **universal** if the RKHS $\mathcal H$ of k is dense in $\mathcal C(\mathcal X)$, i.e., for every function $g \in \mathcal C(\mathcal X)$ and all $\varepsilon > 0$ there exist an $f \in \mathcal H$ such that

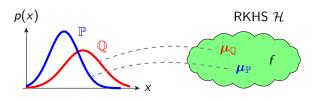
$$||f - g||_{\infty} \le \varepsilon.$$

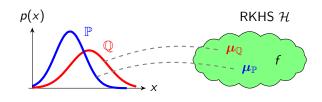


Embedding of Marginal Distributions

Embedding of Conditional Distributions

Future Directions

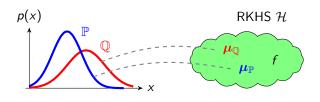




Definition

Let $\mathscr P$ be a space of all probability measures on a measurable space $(\mathcal X,\Sigma)$ and $\mathcal H$ an RKHS endowed with a reproducing kernel $k:\mathcal X\times\mathcal X\to\mathbb R$. A **kernel mean embedding** is defined by

$$\mu:\mathscr{P} o\mathcal{H},\quad\mathbb{P}\mapsto\int k(\cdot,\mathbf{x})\,\mathrm{d}\mathbb{P}(\mathbf{x}).$$

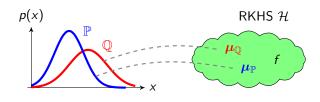


Definition

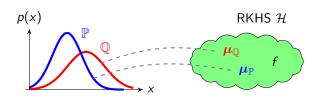
Let \mathscr{P} be a space of all probability measures on a measurable space (\mathcal{X}, Σ) and \mathcal{H} an RKHS endowed with a reproducing kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. A **kernel mean embedding** is defined by

$$\mu:\mathscr{P} o\mathcal{H},\quad \mathbb{P}\mapsto\int k(\cdot,\mathbf{x})\,\mathrm{d}\mathbb{P}(\mathbf{x}).$$

Remark: For a Dirac measure $\delta_{\mathbf{x}}$, $\delta_{\mathbf{x}} \mapsto \mu[\delta_{\mathbf{x}}] \equiv \mathbf{x} \mapsto k(\cdot, \mathbf{x})$.



▶ If
$$\mathbb{E}_{X \sim \mathbb{P}}[\sqrt{k(X,X)}] < \infty$$
, then $\mu_{\mathbb{P}} \in \mathcal{H}$ and
$$\mathbb{E}_{X \sim \mathbb{P}}[f(X)] = \langle f, \mu_{\mathbb{P}} \rangle, \quad f \in \mathcal{H}.$$



▶ If $\mathbb{E}_{X \sim \mathbb{P}}[\sqrt{k(X,X)}] < \infty$, then $\mu_{\mathbb{P}} \in \mathcal{H}$ and

$$\mathbb{E}_{X \sim \mathbb{P}}[f(X)] = \langle f, \mu_{\mathbb{P}} \rangle, \quad f \in \mathcal{H}.$$

▶ The kernel *k* is said to be characteristic if the map

$$\mathbb{P}\mapsto oldsymbol{\mu}_\mathbb{P}$$

is injective. That is, $\|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}} = 0$ if and only if $\mathbb{P} = \mathbb{Q}$.

▶ Given an i.i.d. sample x_1, x_2, \ldots, x_n from \mathbb{P} , we can estimate $\mu_{\mathbb{P}}$ by

$$\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^{n} k(x_i, \cdot).$$

¹Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.

²Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

▶ Given an i.i.d. sample x_1, x_2, \ldots, x_n from \mathbb{P} , we can estimate $\mu_{\mathbb{P}}$ by

$$\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^{n} k(x_i, \cdot).$$

▶ For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.

¹Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.

²Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

▶ Given an i.i.d. sample x_1, x_2, \ldots, x_n from \mathbb{P} , we can estimate $\mu_{\mathbb{P}}$ by

$$\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^{n} k(x_i, \cdot).$$

- ▶ For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.
- ▶ Assume that $||f||_{\infty} \le 1$ for all $f \in \mathcal{H}$ with $||f||_{\mathcal{H}} \le 1$. W.p.a.l 1δ ,

$$\|\hat{\boldsymbol{\mu}}_{\mathbb{P}} - \boldsymbol{\mu}_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}[k(\boldsymbol{x}, \boldsymbol{x})]}{n}} + \sqrt{\frac{2\log\frac{1}{\delta}}{n}}.$$

¹Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.

²Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

▶ Given an i.i.d. sample x_1, x_2, \ldots, x_n from \mathbb{P} , we can estimate $\mu_{\mathbb{P}}$ by

$$\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^{n} k(x_i, \cdot).$$

- ▶ For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.
- ▶ Assume that $\|f\|_{\infty} \le 1$ for all $f \in \mathcal{H}$ with $\|f\|_{\mathcal{H}} \le 1$. W.p.a.l 1δ ,

$$\|\hat{\boldsymbol{\mu}}_{\mathbb{P}} - \boldsymbol{\mu}_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}[k(\boldsymbol{x}, \boldsymbol{x})]}{n}} + \sqrt{\frac{2\log\frac{1}{\delta}}{n}}.$$

▶ The convergence happens at a rate $O_p(n^{-1/2})$ which has been shown to be minimax optimal.¹

²Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.

¹Tolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.

▶ Given an i.i.d. sample $x_1, x_2, ..., x_n$ from \mathbb{P} , we can estimate $\mu_{\mathbb{P}}$ by

$$\hat{\boldsymbol{\mu}}_{\mathbb{P}} := \frac{1}{n} \sum_{i=1}^{n} k(x_i, \cdot).$$

- ▶ For each $f \in \mathcal{H}$, we have $\mathbb{E}_{X \sim \widehat{\mathbb{P}}}[f(X)] = \langle f, \hat{\mu}_{\mathbb{P}} \rangle$.
- ▶ Assume that $||f||_{\infty} \le 1$ for all $f \in \mathcal{H}$ with $||f||_{\mathcal{H}} \le 1$. W.p.a.l 1δ ,

$$\|\hat{\boldsymbol{\mu}}_{\mathbb{P}} - \boldsymbol{\mu}_{\mathbb{P}}\|_{\mathcal{H}} \leq 2\sqrt{\frac{\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}}[k(\boldsymbol{x}, \boldsymbol{x})]}{n}} + \sqrt{\frac{2\log\frac{1}{\delta}}{n}}.$$

- ▶ The convergence happens at a rate $O_p(n^{-1/2})$ which has been shown to be minimax optimal.¹
- ► In high dimensional setting, we can improve an estimation by shrinkage estimators:²

$$\hat{\boldsymbol{\mu}}_{\alpha} := \alpha f^* + (1 - \alpha)\hat{\boldsymbol{\mu}}_{\mathbb{P}}, \quad f^* \in \mathcal{H}.$$

¹Tolstikhin et al. *Minimax Estimation of Kernel Mean Embeddings*. JMLR, 2017. ²Muandet et al. *Kernel Mean Shrinkage Estimators*. JMLR, 2016.

Explicit Representation

What properties are captured by $\mu_{\mathbb{P}}$?

- ▶ $k(x,x') = \langle x,x' \rangle$ the first moment of \mathbb{P} ▶ $k(x,x') = (\langle x,x' \rangle + 1)^p$ moments of \mathbb{P} up to order $p \in \mathbb{N}$
- \blacktriangleright k(x,x') is universal/characteristic all information of $\mathbb P$

Explicit Representation

What properties are captured by $\mu_{\mathbb{P}}$?

- $k(x,x')=\langle x,x' \rangle$ the first moment of $\mathbb P$
- $ho k(x,x')=(\langle x,x'
 angle+1)^p$ moments of $\mathbb P$ up to order $p\in\mathbb N$
- \blacktriangleright k(x,x') is universal/characteristic all information of $\mathbb P$

Moment-generating function

Consider $k(x, x') = \exp(\langle x, x' \rangle)$. Then, $\mu_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}}[e^{\langle X, \cdot \rangle}]$.

Explicit Representation

What properties are captured by $\mu_{\mathbb{P}}$?

- ▶ $k(x, x') = \langle x, x' \rangle$ the first moment of \mathbb{P}
- $k(x,x')=(\langle x,x'\rangle+1)^p$ moments of $\mathbb P$ up to order $p\in\mathbb N$
- \blacktriangleright k(x,x') is universal/characteristic all information of $\mathbb P$

Moment-generating function

Consider $k(x, x') = \exp(\langle x, x' \rangle)$. Then, $\mu_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}}[e^{\langle X, \cdot \rangle}]$.

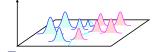
Characteristic function

Consider $k(x,y) = \psi(x-y), x, y \in \mathbb{R}^d$ where ψ is a positive definite function. Then,

$$\mu_{\mathbb{P}}(y) = \int \psi(x-y) d\mathbb{P}(x) = \Lambda \cdot \hat{\mathbb{P}}$$

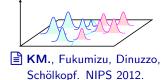
for positive finite measure Λ .

Learning from Distributions

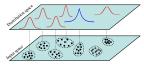


KM., Fukumizu, Dinuzzo, Schölkopf. NIPS 2012.

Learning from Distributions

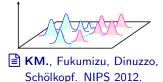


Group Anomaly Detection

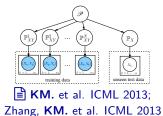


KM. and Schölkopf, UAI 2013.

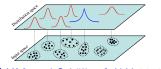
Learning from Distributions



Domain Adaptation/Generalization

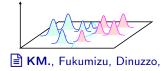


Group Anomaly Detection



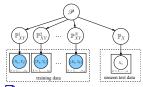
KM. and Schölkopf, UAI 2013.

Learning from Distributions



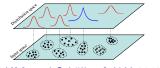
Domain Adaptation/Generalization

Schölkopf. NIPS 2012.



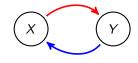
KM. et al. ICML 2013; Zhang, KM. et al. ICML 2013

Group Anomaly Detection



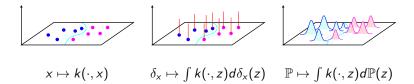
KM. and Schölkopf, UAI 2013.

Cause-Effect Inference

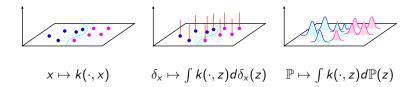


Lopez-Paz, KM. et al. JMLR 2015, ICML 2015.

Support Measure Machine (SMM)



Support Measure Machine (SMM)



Theorem

Under technical assumptions on $\Omega:[0,+\infty)\to\mathbb{R}$, and a loss function $\ell:(\mathcal{P}\times\mathbb{R}^2)^m\to\mathbb{R}\cup\{+\infty\}$, any $f\in\mathcal{H}$ minimizing

$$\ell\left(\mathbb{P}_{1}, y_{1}, \mathbb{E}_{\mathbb{P}_{1}}[f], \dots, \mathbb{P}_{m}, y_{m}, \mathbb{E}_{\mathbb{P}_{m}}[f]\right) + \Omega\left(\|f\|_{\mathcal{H}}\right)$$

admits a representation of the form

$$f = \sum_{i=1}^{m} \alpha_i \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_i} [k(\mathbf{x}, \cdot)] = \sum_{i=1}^{m} \alpha_i \mu_{\mathbb{P}_i}.$$

Maximum mean discrepancy (MMD)

$$\mathsf{MMD}^2(\mathbb{P},\mathbb{Q},\mathcal{H}) := \sup_{h \in \mathcal{H}, \|h\| \le 1} \left| \int h(x) \, \mathrm{d}\mathbb{P}(x) - \int h(x) \, \mathrm{d}\mathbb{Q}(x) \right|$$

Maximum mean discrepancy (MMD)

$$\mathsf{MMD}^2(\mathbb{P},\mathbb{Q},\mathcal{H}) := \sup_{h \in \mathcal{H}, \|h\| \leq 1} \left| \int h(x) \, \mathrm{d}\mathbb{P}(x) - \int h(x) \, \mathrm{d}\mathbb{Q}(x) \right|$$

▶ MMD is an **integral probability metric (IPM)** and corresponds to the RKHS distance between mean embeddings.

$$\mathsf{MMD}^2(\mathbb{P},\mathbb{Q},\mathcal{H}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^2.$$

Maximum mean discrepancy (MMD)

$$\mathsf{MMD}^2(\mathbb{P},\mathbb{Q},\mathcal{H}) := \sup_{h \in \mathcal{H}, \|h\| \leq 1} \left| \int h(x) \, \mathrm{d}\mathbb{P}(x) - \int h(x) \, \mathrm{d}\mathbb{Q}(x) \right|$$

▶ MMD is an **integral probability metric (IPM)** and corresponds to the RKHS distance between mean embeddings.

$$\mathsf{MMD}^{2}(\mathbb{P},\mathbb{Q},\mathcal{H}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^{2}.$$

▶ If k is **universal**, then $\|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}} = 0$ if and only if $\mathbb{P} = \mathbb{Q}$.

Maximum mean discrepancy (MMD)

$$\mathsf{MMD}^2(\mathbb{P},\mathbb{Q},\mathcal{H}) := \sup_{h \in \mathcal{H}, \|h\| \leq 1} \left| \int h(x) \, \mathrm{d}\mathbb{P}(x) - \int h(x) \, \mathrm{d}\mathbb{Q}(x) \right|$$

▶ MMD is an **integral probability metric (IPM)** and corresponds to the RKHS distance between mean embeddings.

$$\mathsf{MMD}^{2}(\mathbb{P},\mathbb{Q},\mathcal{H}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^{2}.$$

- ▶ If k is **universal**, then $\|\mu_{\mathbb{P}} \mu_{\mathbb{Q}}\|_{\mathcal{H}} = 0$ if and only if $\mathbb{P} = \mathbb{Q}$.
- ▶ Given $\{\mathbf{x}_i\}_{i=1}^n \sim \mathbb{P}$ and $\{\mathbf{y}_j\}_{j=1}^m \sim \mathbb{Q}$, the empirical MMD is

$$\widehat{\mathsf{MMD}}_{u}^{2}(\mathbb{P}, \mathbb{Q}, \mathcal{H}) = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} k(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j \neq i}^{m} k(\mathbf{y}_{i}, \mathbf{y}_{j}) - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j \neq i}^{m} k(\mathbf{x}_{i}, \mathbf{y}_{j}).$$

Generative Adversarial Networks

Learn a deep generative model G via a minimax optimization

$$\min_{G} \max_{D} \mathbb{E}_{x}[\log D(x)] + \mathbb{E}_{z}[\log(1 - D(G(z)))]$$

where *D* is a discriminator and $z \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.



Generative Moment Matching Network

▶ The GAN aims to match two distributions $\mathbb{P}(X)$ and \mathbb{G}_{θ} .

Generative Moment Matching Network

- ▶ The GAN aims to match two distributions $\mathbb{P}(X)$ and \mathbb{G}_{θ} .
- ► Generative moment matching network (GMMN) proposed by Dziugaite et al. (2015) and Li et al. (2015) considers

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\mu}_{X} - \boldsymbol{\mu}_{G_{\boldsymbol{\theta}}(Z)}\|_{\mathcal{H}}^{2} = \min_{\boldsymbol{\theta}} \left\| \int \phi(X) \, \mathrm{d}\mathbb{P}(X) - \int \phi(\tilde{X}) \, \mathrm{d}\mathbb{G}_{\boldsymbol{\theta}}(\tilde{X}) \right\|_{\mathcal{H}}^{2}$$

$$= \min_{\boldsymbol{\theta}} \left\{ \sup_{h \in \mathcal{H}, \|h\| \le 1} \left| \int h \, \mathrm{d}\mathbb{P} - \int h \, \mathrm{d}\mathbb{G}_{\boldsymbol{\theta}} \right| \right\}$$

Generative Moment Matching Network

- ▶ The GAN aims to match two distributions $\mathbb{P}(X)$ and \mathbb{G}_{θ} .
- ► Generative moment matching network (GMMN) proposed by Dziugaite et al. (2015) and Li et al. (2015) considers

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{\mu}_{X} - \boldsymbol{\mu}_{G_{\boldsymbol{\theta}}(Z)}\|_{\mathcal{H}}^{2} = \min_{\boldsymbol{\theta}} \left\| \int \phi(X) \, \mathrm{d}\mathbb{P}(X) - \int \phi(\tilde{X}) \, \mathrm{d}\mathbb{G}_{\boldsymbol{\theta}}(\tilde{X}) \right\|_{\mathcal{H}}^{2}$$

$$= \min_{\boldsymbol{\theta}} \left\{ \sup_{h \in \mathcal{H}, \|h\| \le 1} \left| \int h \, \mathrm{d}\mathbb{P} - \int h \, \mathrm{d}\mathbb{G}_{\boldsymbol{\theta}} \right| \right\}$$

- ▶ Many tricks have been proposed to improve the GMMN:
 - Optimized kernels and feature extractors (Sutherland et al., 2017; Li et al., 2017a),
 - ► Gradient regularization (Binkowski et al., 2018; Arbel et al., 2018)
 - ► Repulsive loss (Wang et al., 2019)
 - Optimized witness points (Mehrjou et al., 2019)

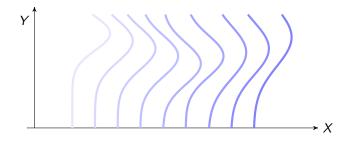
From Points to Measures

Embedding of Marginal Distributions

Embedding of Conditional Distributions

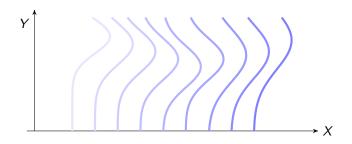
Future Directions

Conditional Distribution $\mathbb{P}(Y|X)$?



A collection of distributions $\mathscr{P}_Y := \{ \mathbb{P}(Y|X = x) : x \in \mathcal{X} \}.$

Conditional Distribution $\mathbb{P}(Y|X)$?



A collection of distributions $\mathscr{P}_Y := \{ \mathbb{P}(Y|X=x) : x \in \mathcal{X} \}.$

▶ For each $x \in \mathcal{X}$, we can define an embedding of $\mathbb{P}(Y|X=x)$ as

$$\mu_{Y|x} := \int_{Y} \varphi(Y) \ d\mathbb{P}(Y|X=x) = \mathbb{E}_{Y|x}[\varphi(Y)]$$

where $\varphi: \mathcal{Y} \to \mathcal{G}$ is a feature map of Y.

▶ Let \mathcal{H}, \mathcal{G} be RKHSes on \mathcal{X}, \mathcal{Y} with feature maps

$$\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).$$

▶ Let \mathcal{H}, \mathcal{G} be RKHSes on \mathcal{X}, \mathcal{Y} with feature maps

$$\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).$$

▶ Let $C_{XX}: \mathcal{H} \to \mathcal{H}$ and $C_{YX}: \mathcal{H} \to \mathcal{G}$ be the **covariance operator** on X and **cross-covariance operator** from X to Y, i.e.,

$$\mathcal{C}_{XX} = \int \phi(X) \otimes \phi(X) d\mathbb{P}(X),$$

$$\mathcal{C}_{YX} = \int \varphi(Y) \otimes \phi(X) d\mathbb{P}(Y, X)$$

▶ Let \mathcal{H}, \mathcal{G} be RKHSes on \mathcal{X}, \mathcal{Y} with feature maps

$$\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).$$

▶ Let $C_{XX}: \mathcal{H} \to \mathcal{H}$ and $C_{YX}: \mathcal{H} \to \mathcal{G}$ be the **covariance operator** on X and **cross-covariance operator** from X to Y, i.e.,

$$\mathcal{C}_{XX} = \int \phi(X) \otimes \phi(X) d\mathbb{P}(X),$$

$$\mathcal{C}_{YX} = \int \varphi(Y) \otimes \phi(X) d\mathbb{P}(Y, X)$$

 \triangleright Alternatively, \mathcal{C}_{YX} is a unique bounded operator satisfying

$$\langle g, \mathcal{C}_{YX} f \rangle_{\mathcal{G}} = \mathsf{Cov}[g(Y), f(X)].$$

▶ Let \mathcal{H}, \mathcal{G} be RKHSes on \mathcal{X}, \mathcal{Y} with feature maps

$$\phi(x) = k(x, \cdot), \qquad \varphi(y) = \ell(y, \cdot).$$

▶ Let $C_{XX}: \mathcal{H} \to \mathcal{H}$ and $C_{YX}: \mathcal{H} \to \mathcal{G}$ be the **covariance operator** on X and **cross-covariance operator** from X to Y, i.e.,

$$\mathcal{C}_{XX} = \int \phi(X) \otimes \phi(X) d\mathbb{P}(X),$$

$$\mathcal{C}_{YX} = \int \varphi(Y) \otimes \phi(X) d\mathbb{P}(Y, X)$$

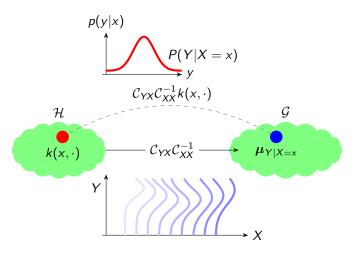
ightharpoonup Alternatively, C_{YX} is a unique bounded operator satisfying

$$\langle g, \mathcal{C}_{YX} f \rangle_{\mathcal{G}} = \text{Cov}[g(Y), f(X)].$$

▶ If $\mathbb{E}_{YX}[g(Y)|X = \cdot] \in \mathcal{H}$ for $g \in \mathcal{G}$, then

$$C_{XX}\mathbb{E}_{YX}[g(Y)|X=\cdot]=C_{XY}g.$$

Embedding of Conditional Distributions



The conditional mean embedding of $\mathbb{P}(Y|X)$ can be defined as

$$\mathcal{U}_{Y|X}: \mathcal{H} \to \mathcal{G}, \qquad \mathcal{U}_{Y|X}:=\mathcal{C}_{YX}\mathcal{C}_{XX}^{-1}$$

▶ To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and **conditional expectation**.

- ▶ To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and **conditional expectation**.
- ▶ To represent $\mathbb{P}(Y|X=x)$ for $x \in \mathcal{X}$, it follows that

$$\mathbb{E}_{Y|X}[\varphi(Y) \mid X = X] = \mathcal{U}_{Y|X}k(X,\cdot) = \mathcal{C}_{YX}\mathcal{C}_{XX}^{-1}k(X,\cdot) =: \mu_{Y|X}.$$

- ▶ To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and **conditional expectation**.
- ▶ To represent $\mathbb{P}(Y|X=x)$ for $x \in \mathcal{X}$, it follows that

$$\mathbb{E}_{Y|x}[\varphi(Y) \mid X = x] = \mathcal{U}_{Y|X}k(x,\cdot) = \mathcal{C}_{YX}\mathcal{C}_{XX}^{-1}k(x,\cdot) =: \mu_{Y|x}.$$

ightharpoonup It follows from the reproducing property of $\mathcal G$ that

$$\mathbb{E}_{Y|x}[g(Y) \mid X = x] = \langle \mu_{Y|x}, g \rangle_{\mathcal{G}}$$

for all $g \in \mathcal{G}$.

- ▶ To fully represent $\mathbb{P}(Y|X)$, we need to perform **conditioning** and **conditional expectation**.
- ▶ To represent $\mathbb{P}(Y|X=x)$ for $x \in \mathcal{X}$, it follows that

$$\mathbb{E}_{Y|x}[\varphi(Y) \mid X = x] = \mathcal{U}_{Y|X}k(x,\cdot) = \mathcal{C}_{YX}\mathcal{C}_{XX}^{-1}k(x,\cdot) =: \mu_{Y|x}.$$

ightharpoonup It follows from the reproducing property of ${\cal G}$ that

$$\mathbb{E}_{Y|x}[g(Y) | X = x] = \langle \boldsymbol{\mu}_{Y|x}, g \rangle_{\mathcal{G}}$$

for all $g \in \mathcal{G}$.

▶ In an infinite RKHS, C_{XX}^{-1} does not exists. Hence, we often use

$$\mathcal{U}_{Y|X} := \mathcal{C}_{YX} (\mathcal{C}_{XX} + \varepsilon \mathbf{I})^{-1}.$$

Conditional Mean Estimation

▶ Given a joint sample $(x_1, y_1), \dots, (x_n, y_n)$ from $\mathbb{P}(X, Y)$, we have

$$\widehat{\mathcal{C}}_{XX} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \otimes \phi(x_i), \qquad \widehat{\mathcal{C}}_{YX} = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i) \otimes \phi(x_i).$$

Conditional Mean Estimation

▶ Given a joint sample $(x_1, y_1), \ldots, (x_n, y_n)$ from $\mathbb{P}(X, Y)$, we have

$$\widehat{C}_{XX} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \otimes \phi(x_i), \qquad \widehat{C}_{YX} = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i) \otimes \phi(x_i).$$

▶ Then, $\mu_{Y|_X}$ for some $x \in \mathcal{X}$ can be estimated as

$$\hat{\boldsymbol{\mu}}_{Y|x} = \widehat{\mathcal{C}}_{YX}(\widehat{\mathcal{C}}_{XX} + \varepsilon \mathcal{I})^{-1} k(x, \cdot) = \Phi(\mathbf{K} + n\varepsilon \mathbf{I}_n)^{-1} \mathbf{k}_x = \sum_{i=1}^n \beta_i \varphi(y_i),$$

where $\lambda > 0$ is a regularization parameter and

$$\Phi = [\varphi(y_1), ..., \varphi(y_n)], \quad \mathbf{K}_{ij} = k(x_i, x_j), \quad \mathbf{k}_{\mathbf{x}} = [k(x_1, x), ..., k(x_n, x)].$$

Conditional Mean Estimation

▶ Given a joint sample $(x_1, y_1), \ldots, (x_n, y_n)$ from $\mathbb{P}(X, Y)$, we have

$$\widehat{C}_{XX} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \otimes \phi(x_i), \qquad \widehat{C}_{YX} = \frac{1}{n} \sum_{i=1}^{n} \varphi(y_i) \otimes \phi(x_i).$$

▶ Then, $\mu_{Y|_X}$ for some $x \in \mathcal{X}$ can be estimated as

$$\hat{\boldsymbol{\mu}}_{Y|x} = \widehat{\mathcal{C}}_{YX}(\widehat{\mathcal{C}}_{XX} + \varepsilon \mathcal{I})^{-1} k(x, \cdot) = \Phi(\mathbf{K} + n\varepsilon \mathbf{I}_n)^{-1} \mathbf{k}_x = \sum_{i=1}^n \beta_i \varphi(y_i),$$

where $\lambda > 0$ is a regularization parameter and

$$\Phi = [\varphi(y_1), ..., \varphi(y_n)], \quad \mathbf{K}_{ij} = k(x_i, x_j), \quad \mathbf{k}_{\mathbf{x}} = [k(x_1, x), ..., k(x_n, x)].$$

▶ Under some technical assumptions, $\hat{\mu}_{Y|x} \to \mu_{Y|x}$ as $n \to \infty$.

Kernel Sum Rule: $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$

▶ By the law of total expectation,

$$\begin{array}{rcl} \mu_X & = & \mathbb{E}_X[\phi(X)] = \mathbb{E}_Y[\mathbb{E}_{X|Y}[\phi(X)|Y]] \\ & = & \mathbb{E}_Y[\mathcal{U}_{X|Y}\varphi(Y)] = \mathcal{U}_{X|Y}\mathbb{E}_Y[\varphi(Y)] = \mathcal{U}_{X|Y}\mu_Y \end{array}$$

Kernel Sum Rule: $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$

By the law of total expectation,

$$\mu_{X} = \mathbb{E}_{X}[\phi(X)] = \mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y]]$$
$$= \mathbb{E}_{Y}[\mathcal{U}_{X|Y}\varphi(Y)] = \mathcal{U}_{X|Y}\mathbb{E}_{Y}[\varphi(Y)] = \mathcal{U}_{X|Y}\mu_{Y}$$

▶ Let $\hat{\mu}_Y = \sum_{i=1}^m \alpha_i \varphi(\tilde{y}_i)$ and $\hat{\mathcal{U}}_{X|Y} = \hat{\mathcal{C}}_{XY} \hat{\mathcal{C}}_{YY}^{-1}$. Then,

$$\hat{\boldsymbol{\mu}}_{X} = \widehat{\mathcal{U}}_{X|Y}\hat{\boldsymbol{\mu}}_{Y} = \widehat{\mathcal{C}}_{XY}\widehat{\mathcal{C}}_{YY}^{-1}\hat{\boldsymbol{\mu}}_{Y} = \Upsilon(\mathbf{L} + n\lambda I)^{-1}\tilde{\mathbf{L}}\boldsymbol{\alpha}.$$

where
$$\alpha = (\alpha_1, \dots, \alpha_m)^{\top}$$
, $\mathbf{L}_{ij} = I(y_i, y_j)$, and $\tilde{\mathbf{L}}_{ij} = I(y_i, \tilde{y}_j)$.

Kernel Sum Rule: $\mathbb{P}(X) = \sum_{Y} \mathbb{P}(X, Y)$

By the law of total expectation,

$$\mu_{X} = \mathbb{E}_{X}[\phi(X)] = \mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y]]$$
$$= \mathbb{E}_{Y}[\mathcal{U}_{X|Y}\varphi(Y)] = \mathcal{U}_{X|Y}\mathbb{E}_{Y}[\varphi(Y)] = \mathcal{U}_{X|Y}\mu_{Y}$$

▶ Let $\hat{\mu}_Y = \sum_{i=1}^m \alpha_i \varphi(\tilde{y}_i)$ and $\hat{\mathcal{U}}_{X|Y} = \hat{\mathcal{C}}_{XY} \hat{\mathcal{C}}_{YY}^{-1}$. Then,

$$\hat{\boldsymbol{\mu}}_{X} = \widehat{\mathcal{U}}_{X|Y}\hat{\boldsymbol{\mu}}_{Y} = \widehat{\mathcal{C}}_{XY}\widehat{\mathcal{C}}_{YY}^{-1}\hat{\boldsymbol{\mu}}_{Y} = \Upsilon(\mathbf{L} + n\lambda I)^{-1}\tilde{\mathbf{L}}\boldsymbol{\alpha}.$$

where $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)^{\top}$, $\mathbf{L}_{ij} = I(y_i, y_j)$, and $\tilde{\mathbf{L}}_{ij} = I(y_i, \tilde{y}_j)$.

► That is, we have

$$\hat{\boldsymbol{\mu}}_X = \sum_{i=1}^n \beta_i \phi(x_i)$$

with
$$\boldsymbol{\beta} = (\mathbf{L} + n\lambda I)^{-1} \hat{\mathbf{L}} \boldsymbol{\alpha}$$
.

• We can factorize $\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \varphi(Y)]$ as

$$\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y}\mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$$

$$\mathbb{E}_{X}[\mathbb{E}_{Y|X}[\varphi(Y)|X] \otimes \phi(X)] = \mathcal{U}_{Y|X}\mathbb{E}_{X}[\phi(X) \otimes \phi(X)]$$

³Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

• We can factorize $\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \varphi(Y)]$ as

$$\begin{array}{lcl} \mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] & = & \mathcal{U}_{X|Y}\mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)] \\ \mathbb{E}_{X}[\mathbb{E}_{Y|X}[\varphi(Y)|X] \otimes \phi(X)] & = & \mathcal{U}_{Y|X}\mathbb{E}_{X}[\phi(X) \otimes \phi(X)] \end{array}$$

▶ Let $\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]$ and $\mu_Y^{\otimes} = \mathbb{E}_Y[\varphi(Y) \otimes \varphi(Y)]$.

³Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

• We can factorize $\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \varphi(Y)]$ as

$$\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y}\mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$$

$$\mathbb{E}_{X}[\mathbb{E}_{Y|X}[\varphi(Y)|X] \otimes \phi(X)] = \mathcal{U}_{Y|X}\mathbb{E}_{X}[\phi(X) \otimes \phi(X)]$$

- ▶ Let $\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]$ and $\mu_Y^{\otimes} = \mathbb{E}_Y[\varphi(Y) \otimes \varphi(Y)]$.
- ▶ Then, the product rule becomes

$$\mu_{XY} = \mathcal{U}_{X|Y}\mu_Y^{\otimes} = \mathcal{U}_{Y|X}\mu_X^{\otimes}.$$

³Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

• We can factorize $\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \varphi(Y)]$ as

$$\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y}\mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$$

$$\mathbb{E}_{X}[\mathbb{E}_{Y|X}[\varphi(Y)|X] \otimes \phi(X)] = \mathcal{U}_{Y|X}\mathbb{E}_{X}[\phi(X) \otimes \phi(X)]$$

- ▶ Let $\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]$ and $\mu_Y^{\otimes} = \mathbb{E}_Y[\varphi(Y) \otimes \varphi(Y)]$.
- ▶ Then, the product rule becomes

$$\mu_{XY} = \mathcal{U}_{X|Y}\mu_Y^{\otimes} = \mathcal{U}_{Y|X}\mu_X^{\otimes}.$$

▶ Alternatively, we may write the above formulation as

$$\mathcal{C}_{XY} = \mathcal{U}_{X|Y}\mathcal{C}_{YY}$$
 and $\mathcal{C}_{YX} = \mathcal{U}_{Y|X}\mathcal{C}_{XX}$

³Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

• We can factorize $\mu_{XY} = \mathbb{E}_{XY}[\phi(X) \otimes \varphi(Y)]$ as

$$\mathbb{E}_{Y}[\mathbb{E}_{X|Y}[\phi(X)|Y] \otimes \varphi(Y)] = \mathcal{U}_{X|Y}\mathbb{E}_{Y}[\varphi(Y) \otimes \varphi(Y)]$$

$$\mathbb{E}_{X}[\mathbb{E}_{Y|X}[\varphi(Y)|X] \otimes \phi(X)] = \mathcal{U}_{Y|X}\mathbb{E}_{X}[\phi(X) \otimes \phi(X)]$$

- ▶ Let $\mu_X^{\otimes} = \mathbb{E}_X[\phi(X) \otimes \phi(X)]$ and $\mu_Y^{\otimes} = \mathbb{E}_Y[\varphi(Y) \otimes \varphi(Y)]$.
- ▶ Then, the product rule becomes

$$\mu_{XY} = \mathcal{U}_{X|Y}\mu_Y^{\otimes} = \mathcal{U}_{Y|X}\mu_X^{\otimes}.$$

▶ Alternatively, we may write the above formulation as

$$\mathcal{C}_{XY} = \mathcal{U}_{X|Y} \mathcal{C}_{YY}$$
 and $\mathcal{C}_{YX} = \mathcal{U}_{Y|X} \mathcal{C}_{XX}$

► The kernel sum and product rules can be combined to obtain the kernel Bayes' rule.³

³Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013

From Points to Measures

Embedding of Marginal Distributions

Embedding of Conditional Distribution

Future Directions

Future Directions

- Representation learning and embedding of distributions
- Kernel methods in deep learning
 - MMD-GAN
 - Wasserstein autoencoder (WAE)
 - Invariant learning in deep neural networks
- Kernel mean estimation in high dimensional setting
- Recovering (conditional) distributions from mean embeddings

Q & A