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From Points to Measures
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Feature Map
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Feature Map

¢ : (X17X2) — (X12’X22,ﬁX1X2)

Data in Input Space
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Our recipe:

1. Construct a non-linear feature map ¢ : X — H.

2. Evaluate Dy = {¢(x1), (x2), ..., d(xn)}.
3. Solve the learning problem in #H using Dy.




Kernels

Definition
A function k : X x X — R is called a kernel on X if there exists a Hilbert
space H and a map ¢ : X — H such that for all x,x’ € X we have

k(x,x") = (d(x), p(x)) 2

We call ¢ a feature map and H a feature space of k.



Kernels

Definition
A function k : X x X — R is called a kernel on X if there exists a Hilbert
space H and a map ¢ : X — H such that for all x,x’ € X we have

k(x,x") = (d(x), p(x)) 2

We call ¢ a feature map and H a feature space of k.

Example

1. k(x,x") = (x-x')? for x,x’ € R?
> ¢(x) = (X7, X3, V2x1x2)
» H =R
2. k(x,x') = (x-x'+ )™ for c > 0,x,x' € R?
> dim(#) = (“})")
3. k(x,x") = exp (=[x — x'||3)
» H =R



Positive Definite Kernels

Definition (Positive definiteness)
A function k : X x X — R is called positive definite if, for all n € N,
ag,...,ap € Rand all xq,...,x, € X, we have

i Zn:a,-ajk(xj,x,-) Z 0.

i=1 j=1

Equivalently, we have that a Gram matrix K is positive definite.
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Positive Definite Kernels

Definition (Positive definiteness)

A function k : X x X — R is called positive definite if, for all n € N,
ag,...,ap € Rand all xq,...,x, € X, we have

n n
Z Z Oz,'OzJ'k(Xj,X,') Z 0.
i=1 j=1
Equivalently, we have that a Gram matrix K is positive definite.

Example (Any kernel is positive definite)
Let k be a kernel with feature map ¢ : X — H, then we have

ZZan Xj, Xi) —<Za,¢x, Zozj¢xj> > 0.

i=1 j=1 X

Positive definiteness is a necessary (and sufficient) condition.
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Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of functions mapping from X into R.
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Reproducing Kernel Hilbert Spaces
Let H be a Hilbert space of functions mapping from X into R.

1. A function k : X x X — R is called a reproducing kernel of # if we
have k(-, x) € H for all x € X’ and the reproducing property

F(x) = (F k(X))

holds for all f € H and all x € X.
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have k(-, x) € H for all x € X’ and the reproducing property

f(x) = (f, k(-,x))
holds for all f € H and all x € X.

2. The space H is called a reproducing kernel Hilbert space (RKHS)
over X if for all x € X’ the Dirac functional d, : H — R defined by

Ix(f) == f(x), feH,

is continuous.



Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of functions mapping from X into R.

1. A function k : X x X — R is called a reproducing kernel of # if we
have k(-, x) € H for all x € X’ and the reproducing property

f(x) = (f, k(-,x))
holds for all f € H and all x € X.

2. The space H is called a reproducing kernel Hilbert space (RKHS)
over X if for all x € X’ the Dirac functional d, : H — R defined by

() =1f(x), e,
is continuous.
Remark: If ||f, — f|[3x — 0 for n — oo, then for all x € X', we have

lim f,(x) = f(x)

n—oo



Reproducing Kernels

Lemma (Reproducing kernels are kernels)

Let H be a Hilbert space over X with a reproducing kernel k. Then H is
an RKHS and is also a feature space of k, where the feature map
¢: X — H is given by

We call ¢ the canonical feature map.
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Reproducing Kernels

Lemma (Reproducing kernels are kernels)

Let H be a Hilbert space over X with a reproducing kernel k. Then H is
an RKHS and is also a feature space of k, where the feature map
¢: X — H is given by

We call ¢ the canonical feature map.

Proof
We fix an x’ € X’ and write f := k(-,x’). Then, for x € X, the
reproducing property yields

(6(x), ¢(x)) = (k(-,X), k(-, %)) = (F, k(- %)) = f(x) = k(x,x).

11/34



Kernels and RKHSs

Theorem (Every RKHS has a unique reproducing kernel)
Let H be an RKHS over X. Then k : X x X — R defined by

k(x,x") = (0, 0x' )1y, X, X' €X

is the only reproducing kernel of H. Furthermore, if (&;)ics is an
orthonormal basis of H, then for all x,x’ € X we have

k(x,x') = Z ei(x)ei(x').

iel
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Kernels and RKHSs

Theorem (Every RKHS has a unique reproducing kernel)
Let H be an RKHS over X. Then k : X x X — R defined by

k(x,x') = (6x,0x )2, x,x €X

is the only reproducing kernel of H. Furthermore, if (&;)ics is an
orthonormal basis of H, then for all x,x’ € X we have

k(x,x") = Z ei(x)ei(x).

iel

Universal kernels

A continuous kernel k on a compact metric space X is called universal if
the RKHS # of k is dense in C(X), i.e., for every function g € C(X)
and all € > 0 there exist an f € H such that
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From Points to Measures
Input space X Feature space ‘H

—————
S~
~

-

-

- -
---------

13/34



From Points to Measures

Input space X Feature space ‘H
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Embedding of Marginal Distributions

14/34



Embedding of Marginal Distributions
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Embedding of Marginal Distributions

Definition

Let &2 be a space of all probability measures on a measurable space
(X,%) and H an RKHS endowed with a reproducing kernel

k: X x X — R. A kernel mean embedding is defined by

wi P —=H, ]P’»—>/ x) dP(x).
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Embedding of Marginal Distributions

Definition

Let &2 be a space of all probability measures on a measurable space
(X,%) and H an RKHS endowed with a reproducing kernel

k: X x X — R. A kernel mean embedding is defined by

wi P —=H, ]P’»—>/ x) dP(x).

Remark: For a Dirac measure dy, dx — u[dx] = x — k(-,x).

15/34



Embedding of Marginal Distributions

> If Exp[v/k(X, X)] < oo, then up € H and
Exwp[f(X)] = <f, ,u[p>>, feH.
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Embedding of Marginal Distributions

> If Exp[/k(X, X)] < oo, then pp € H and
Ex-slf(X)] = (F, ), £ EH.
» The kernel k is said to be characteristic if the map
P— pp

is injective. That is, ||up — poll2 = 0 if and only if P = Q.
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Kernel Mean Estimation

» Given an i.i.d. sample xq, X2, ..., x, from P, we can estimate up by

1 n
ip == — k iyt)-
Kp n; (xi,°)

ITolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
2Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.
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Kernel Mean Estimation

» Given an i.i.d. sample xq, X2, ..., x, from P, we can estimate up by

1 n
ip == — k iyt)-
Kp n; (xi,°)

» For each f € H, we have E, 5[f(X)] = (f, fip).
> Assume that ||f||e <1 for all f € H with |||y <1. W.p.alll—39,

~ Eyxp[k(x, x 2|0gl
llap — pp|y <2 [n( )]—I-\/ né'

ITolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
2Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016. 17/34



Kernel Mean Estimation

» Given an i.i.d. sample xq, X2, ..., x, from P, we can estimate up by

1 n
ip == — k iyt)-
Kp n; (xi,°)

» For each f € H, we have E, 5[f(X)] = (f, fip).
> Assume that ||f||e <1 for all f € H with |||y <1. W.p.alll—39,

~ Eyxp[k(x, x 2|0gl
llap — pp|y <2 [n( )]—I-\/ né'

» The convergence happens at a rate O,(n~%/2) which has been shown
to be minimax optimal.?

ITolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
2Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.
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Kernel Mean Estimation

» Given an i.i.d. sample xq, X2, ..., x, from P, we can estimate up by

1 n
ip == — k iyt)-
Kp n; (xi,°)

» For each f € H, we have E, 5[f(X)] = (f, fip).
> Assume that ||f||e <1 for all f € H with |||y <1. W.p.alll—39,

~ Eyxp[k(x, x 2|0gl
llap — pp|y <2 [n( )]—I-\/ né'

» The convergence happens at a rate O,(n~%/2) which has been shown
to be minimax optimal.?

> In high dimensional setting, we can improve an estimation by
shrinkage estimators:?

fo i =af*+(1—a)ap, *eH.

ITolstikhin et al. Minimax Estimation of Kernel Mean Embeddings. JMLR, 2017.
2Muandet et al. Kernel Mean Shrinkage Estimators. JMLR, 2016.
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Explicit Representation

What properties are captured by pp?

> k(x,x") = (x,x")
> k(x,x) = ((xx) +1)P

> k(x,x’) is universal/characteristic

the first moment of P
moments of P up to order p € N

all information of P



Explicit Representation

What properties are captured by pp?

> k(x,x") = (x,x") the first moment of P
> k(x,x") = ({(x,x") + 1)P moments of P up to order p € N
> k(x,x’) is universal/characteristic all information of P

Moment-generating function
Consider k(x,x') = exp({x,x')). Then, up = Exp[eX"].



Explicit Representation

What properties are captured by pp?

> k(x,x") = (x,x") the first moment of P
> k(x,x") = ({(x,x") + 1)P moments of P up to order p € N
> k(x,x’) is universal/characteristic all information of P

Moment-generating function
Consider k(x,x') = exp({x,x')). Then, up = Exp[eX"].
Characteristic function

Consider k(x,y) =1 (x — y), x,y € R where 1) is a positive definite
function. Then,

pe(y) = [ 6lx =) dpG) = AP

for positive finite measure A.



Application: High-Level Generalization

Learning from Distributions

MAS

@ KM., Fukumizu, Dinuzzo,
Schélkopf. NIPS 2012.
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Application: High-Level Generalization

Learning from Distributions Group Anomaly Detection
Qﬁ“\w/\/\/\k
I

@ KM., Fukumizu, Dinuzzo,
Schélkopf. NIPS 2012.

[) KM. and Schélkopf, UAI 2013.
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Application: High-Level Generalization

Learning from Distributions Group Anomaly Detection

7 AN

MAS

@ KM., Fukumizu, Dinuzzo,
Schélkopf. NIPS 2012.

Domain
Adaptation/Generalization
(#)

CICEHCERO

CCRCS

n test data

Ej KM. et al. ICML 2013;
Zhang, KM. et al. ICML 2013

[) KM. and Schélkopf, UAI 2013.
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Application: High-Level Generalization

Learning from Distributions Group Anomaly Detection

AN

MAS

@ KM., Fukumizu, Dinuzzo,
Schélkopf. NIPS 2012.

Domain Cause-Effect Inference
Adaptation/Generalization
2 OO,
DIOHCOERO w___
©0)-[6]
e [2) Lopez-Paz, KM. et al.
@ KM. et al. 1ML 2013; JMLR 2015, ICML 2015.

Zhang, KM. et al. ICML 2013

[) KM. and Schélkopf, UAI 2013.
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Support Measure Machine (SMM)

_ww

5l—>fk [P’l—>fk z)dP(z)
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Support Measure Machine (SMM)

L L e

x — k(- x) Sy [ k(- 2)do(z) P> [ k(- z)dP(z)

Theorem
Under technical assumptions on 2 : [0,4+00) — R, and a loss function
0: (P xR?)™ — RU{+oc}, any f € H minimizing

C(Py,y1, B, [f], .., Prm, ym, B, [F]) + Q (1120

admits a representation of the form

f—Za, XN]p[k ]—ZO&MPI



Kernel Discrepancy Measure for Distributions

» Maximum mean discrepancy (MMD)

MMD?(P,Q,H) :==  sup
e, ||hl|<1

/ h(x) dP(x) — / h(x) dQ(x)




Kernel Discrepancy Measure for Distributions

» Maximum mean discrepancy (MMD)

MMD?(P,Q,H) :==  sup
e, ||hl|<1

/ h(x) dP(x) — / h(x) dQ(x)

» MMD is an integral probability metric (IPM) and corresponds to
the RKHS distance between mean embeddings.

MMD?(P,Q, H) = ||ur — pal3,.
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Kernel Discrepancy Measure for Distributions

» Maximum mean discrepancy (MMD)

MMD?(P,Q,H) :==  sup
e, ||hl|<1

/ h(x) dP(x) — / h(x) dQ(x)

» MMD is an integral probability metric (IPM) and corresponds to
the RKHS distance between mean embeddings.

MMD?(P,Q, H) = ||ur — pal3,.

> If k is universal, then ||up — pglln = 0 if and only if P = Q.
> Given {x;}{_; ~ P and {y;}™; ~ Q, the empirical MMD is

MMD2(E, Q, ) ZZk X, X;) ZZ (yi,¥))

llﬁél llﬁél

- %sz(x;,yj)-

i=1 j=1
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Generative Adversarial Networks

Learn a deep generative model G via a minimax optimization

mGin max E,[log D(x)] + E,[log(1 — D(G(z)))]

where D is a discriminator and z ~ N(0, o1).

Discriminator Dy Generator Gy

real or synthetic? random noise z

x or Gg(z)
A

o
real data &8

P}

% X ><><><>S< synthetic data
x ©x {Go(2)}

\
MMD Test

[ = ca2)|l,, is zero?



Generative Moment Matching Network

» The GAN aims to match two distributions P(X) and Gy.

23/34



Generative Moment Matching Network

» The GAN aims to match two distributions P(X) and Gy.

» Generative moment matching network (GMMN) proposed by
Dziugaite et al. (2015) and Li et al. (2015) considers

. 2
min [|ix = pey2)ll3 =

/¢ X)dP(X) /¢ ) dGe(X)

min sup /hdIF’ /thg
0 | hen,|lnl<1
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Generative Moment Matching Network

» The GAN aims to match two distributions P(X) and Gy.

» Generative moment matching network (GMMN) proposed by
Dziugaite et al. (2015) and Li et al. (2015) considers

. 2
min {|px = ko2 |5, =

/¢ X) dP(X) /¢ ) dGe(X

min sup /th—/thg
0 | hen,lihl<1

» Many tricks have been proposed to improve the GMMN:

» Optimized kernels and feature extractors (Sutherland et al., 2017; Li
et al., 2017a),

» Gradient regularization (Binkowski et al., 2018; Arbel et al., 2018)

> Repulsive loss (Wang et al., 2019)

» Optimized witness points (Mehrjou et al., 2019)
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Embedding of Conditional Distributions
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Conditional Distribution P(Y|X)?

Lo

A collection of distributions Py := {P(Y|X = x) : x € X'}.
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Conditional Distribution P(Y|X)?

A collection of distributions £y = {P(Y|X =x) : x € X}.
> For each x € X, we can define an embedding of P(Y|X = x) as

By = / H(Y) dP(Y|X = x) = By u[o( V)]

where ¢ : Y — G is a feature map of Y.

25/34



Covariance Operators
> Let H,G be RKHSes on X', ) with feature maps
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Covariance Operators
> Let H,G be RKHSes on X', ) with feature maps

> Let Cxx : H — H and Cyx : H — G be the covariance operator on
X and cross-covariance operator from X to Y, i.e.,

Cxx

/ 6(X) ® 6(X) dP(X),

Cyx = / oY) @ o(X) dP(Y, X)
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Covariance Operators
> Let H,G be RKHSes on X', ) with feature maps

> Let Cxx : H — H and Cyx : H — G be the covariance operator on
X and cross-covariance operator from X to Y, i.e.,

Co = [ 600 @ 600) dP(X),
Cox = [ oY) ®6(X) dB(Y. X)

> Alternatively, Cyx is a unique bounded operator satisfying

(g,Cyxf)g = Covl[g(Y), f(X)].

26/34



Covariance Operators
> Let H,G be RKHSes on X', ) with feature maps

> Let Cxx : H — H and Cyx : H — G be the covariance operator on
X and cross-covariance operator from X to Y, i.e.,

Cxx / 6(X) © 6(X) dP(X),
Cyx = / oY) @ ¢(X) dB(Y, X)

> Alternatively, Cyx is a unique bounded operator satisfying

(g,Cvxf)g = Cov[g(Y), f(X)].
> If Evx[g(Y)|X =] € H for g € G, then

CxxEyx[g(Y)|X =] =Cxvg.

26/34



Embedding of Conditional Distributions

ply[x)

/ \ P(Y|X = x)
y

CYXC)&/‘(K )

° . K
k(x,-) CyxCxx My |x=x
Y
X

The conditional mean embedding of P(Y | X) can be defined as

uY\X :H—)Q, UY\X = CYXC;)%



Conditional Mean Embedding

> To fully represent P(Y|X), we need to perform conditioning and
conditional expectation.
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Conditional Mean Embedding

> To fully represent P(Y|X), we need to perform conditioning and
conditional expectation.

> To represent P(Y|X = x) for x € X, it follows that
Eyix[p(Y) [ X = x] = Uy xk(x,:) = CYXCQ)%k(X, ) = Byxe
> It follows from the reproducing property of G that
Eyvix[g(Y)I X =x] = (py|x 8)g

for all g € G.



Conditional Mean Embedding

> To fully represent P(Y|X), we need to perform conditioning and
conditional expectation.
> To represent P(Y|X = x) for x € X, it follows that
Evixle(Y)| X = x] = Uy xk(x, ) = CyxCxxk(x,) =t py|x.
> It follows from the reproducing property of G that
Evilg(Y) | X =x] = (pyix. 8)g
for all g € G.
» In an infinite RKHS, C;} does not exists. Hence, we often use

Z/{y‘x = ny(Cxx + El)_l.



Conditional Mean Estimation

> Given a joint sample (x1,¥1), .., (Xn, ¥n) from P(X, Y), we have

n

Coc =73 00)@00x), Crc =7 3 ¢(1) @ 0(x)
i=1

i=1
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Conditional Mean Estimation

> Given a joint sample (x1,¥1), .., (Xn, ¥n) from P(X, Y), we have

n

Coc =73 00)@00x), Crc =7 3 ¢(1) @ 0(x)
i=1

i=1

» Then, py|, for some x € X can be estimated as
fiyx = Cyx (Cxx +€7) 7Hk(x, ) = O(K + nely) ke = Y Bioli),
i=1

where A > 0 is a regularization parameter and

¢ = [4,0(}/1)7 "a‘P(yn)]v Kl'j = k(Xl'an)’ kx = [k(Xl’X)’ ) k(thX)]'
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Conditional Mean Estimation

> Given a joint sample (x1,¥1), .., (Xn, ¥n) from P(X, Y), we have

n

Coc =73 00)@00x), Crc =7 3 ¢(1) @ 0(x)
i=1

i=1

» Then, py|, for some x € X can be estimated as
fiyx = Cyx (Cxx +€7) 7Hk(x, ) = O(K + nely) ke = Y Bioli),
i=1

where A > 0 is a regularization parameter and

¢ = [4,0(}/1)7 "a‘P(yn)]v Kl'j = k(Xl'an)’ kx = [k(Xl’X)’ ) k(thX)]'

» Under some technical assumptions, fiy|x — pty|x as n — oco.

29/34



Kernel Sum Rule: P(X) =", P(X,Y)

> By the law of total expectation,

px = Ex[s(X)] = Ev[Ex)y[¢(X)|Y]]
Ey[Uxye(Y)] = UxyEy[p(Y)] = Ux |y 1y
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> By the law of total expectation,

px = Ex[s(X)] = Ev[Ex)y[¢(X)|Y]]
Ey[Uxye(Y)] = UxyEy[p(Y)] = Ux |y 1y

> Let ﬂ,y = 27;1 Oz;(p(}';,') and Z:{\)qy = é\xyé\;¢ Then,
bx = Z:{\X‘y/’),y = é\xyé\;\{ﬁy = T(L + nAI)fllﬂ.a.

where a = (ag, . .. ,am)T, L = I(yi,yj), and I~.U = I(yi, ¥j)-



Kernel Sum Rule: P(X) =", P(X,Y)

> By the law of total expectation,

px = Ex[s(X)] = Ev[Ex)y[¢(X)|Y]]
Ey[Uxye(Y)] = UxyEy[p(Y)] = Ux |y 1y

> Let ﬂ,y = 27;1 Oz;(p(}';,') and Z:{\)qy = é\xyé\;;E Then,
bx = Z:{\X‘yﬁy = é\xyé\;\{ﬁy = T(L + nAI)fllﬂ.a.

where a = (ag, . .. ,am)T, L = I(yi,yj), and I~.U = I(yi, ¥j)-

» That is, we have

fix =Y Bio(x)
j=1

with 3 = (L + n\)'Lev.



Kernel Product Rule: P(X, Y) = P(Y|X)P(X)

» We can factorize uxy = Exy[¢(X) ® o(Y)] as

Ey[Exy[¢(X)[Y] ® ¢(Y)] UxyEy[p(Y) ® o(Y)]
Ex[Eyx[¢(Y)IX] @ ¢(X)] Uy xEx[p(X) @ ¢(X)]

3Fukumizu et al. Kernel Bayes' Rule. JMLR. 2013
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Kernel Product Rule: P(X, Y) = P(Y|X)P(X)

» We can factorize uxy = Exy[¢(X) ® o(Y)] as

Ey[Exy[¢(X)[Y]®p(Y)] = UxyEy[p(Y)®p(Y)]
Ex[Eyix[p(Y)IX]@ 6(X)] = UyxEx[¢(X) @ (X)]

> Let py = Ex[¢(X) @ ¢(X)] and u§ = Ey[p(Y) @ o(Y)].
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Ey[Exyy[e(X)YT@ (V)] = UxyEy[p(Y) @ @(Y)]
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> Let puy = Ex[o(X) @ ¢(X)] and py = Ey[p(Y) @ ¢(Y)].
» Then, the product rule becomes
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» Alternatively, we may write the above formulation as
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Kernel Product Rule: P(X, Y) = P(Y|X)P(X)

v

We can factorize uxy = Exy[¢p(X) ® o(Y)] as

Ey[Exyy[e(X)YT@ (V)] = UxyEy[p(Y) @ @(Y)]
Ex[Eyix[p(V)IX]®@¢(X)] = Uy xEx[6(X) @ ¢(X)]

Let uy = Ex[6(X) @ ¢(X)] and 1y = Ey[p(Y) @ ¢(Y)].
Then, the product rule becomes

v

v

pxy = Uxjy iy = Uy|x -

v

Alternatively, we may write the above formulation as

Cxy =Ux)yCyy and Cyx =UyxCxx

v

The kernel sum and product rules can be combined to obtain the
kernel Bayes’ rule.3
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Future Directions

v

Representation learning and embedding of distributions

v

Kernel methods in deep learning
» MMD-GAN
» Wasserstein autoencoder (WAE)
> Invariant learning in deep neural networks

v

Kernel mean estimation in high dimensional setting

v

Recovering (conditional) distributions from mean embeddings
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