Designing materials with machine learning and quantum annealing

Koji Tsuda University of Tokyo / NIMS / RIKEN

Automatic Materials Design

Agenda

- Bayesian Optimization
- Design of Si-Ge nanostructures (Ju+, PRX 2017)
- Wavelength selective thermal radiator (Sakurai+, ACS Cent Sci, 2019)

D-wave quantum annealer (Kitai+, Arxiv, 2019)

Bayesian Optimization (Jones et al., 1998)

 Find best data points with minimum number of observations

 Choose next point to observe to discover the best ones as early as possible

Screening by first principles calculations alone

| Mat. |
|------|------|------|------|------|------|------|------|------|------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

| Score |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| | | | | | | | | | |

Bayesian Optimization (1)

| Mat. |
|------|------|------|------|------|------|------|------|------|------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

First Principles Calc.

Bayesian Optimization (2)

Bayesian Optimization (3)

First Principles Calc.

Score	Score	Score	Score
1	2	3	8

Bayesian Optimization (4)

First Principles Calc.

Score 1	Score 2	Score 3	Score 8	Pred. Score 4	Pred. Score 5	Pred. Score 6	Pred. Score 7	Pred. Score 9	Pred. Score 10	
				Var. 4	Var. 5	Var. 6	Var. 7	Var. 9	Var. 10	

Where to observe next?

Gaussian Process

Maximum probability of improvement

Alloy Structure Optimization (Phys Rev X, 2017)

Question: How to organize 16 alloy atoms (Si: 8, Ge: 8) to obtain the largest and smallest interfacial thermal conductance?

Lead

Lead

Descriptors: $C_{16}^8 = 12,870$

Case	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	0	0	1	0	0	0	0	0	0
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••

Si/Ge alloy region

<u>Calculator</u>: Atomistic Green's Function (AGF): Phonon transmission

Evaluator: Interfacial Thermal Conductance (ITC)

Optimization method: Thompson Sampling (Bayesian Optimization)

🌈 the University of Tokyo

Department of Mechanical Engineering, Thermal Energy Engineering Lab

Alloy Structure Optimization

Optimal structures were obtained by calculating only 3.4% of all candidates.

💏 the University of Tokyo

Department of Mechanical Engineering, Thermal Energy Engineering Lab

Wavelength selective thermal radiator

Designing layered material

- 18 layers: Ge, Si or SiO₂
- Total thickness: 21 grid points between 3.6 μm and 4.0 μm
- Number of candidate structures: 3¹⁸ x 21 = 8,135,830,269

What to optimize

- Figure of Merit
 - Appreciates peaks near target, penalizes peaks outside
- Calculation of emissivity spectra
 - Electromagnetic
 simulation via transfer
 matrix method

Optimal solution found with 168 million calculations on average (2.06% of all possibilities)

Experimental Validation

TEM image

С

Ge Ge Ge w

Layer Thickness

Target wavelengths, λ_t	5	.0	6	.0	7.0		
Layer No.	Sim.	Exp.	Sim.	Exp.	Sim.	Exp.	
1	0.42	0.42	0.42	0.43	0.44	0.44	
2	0.63	0.61	0.63	0.69	0.66	0.62	
3	0.42	0.43	0.42	0.45	0.44	0.44	
4	1.05	0.97	0.85	0.91	0.88	0.84	
5	0.63	0.63	0.85	0.87	0.44	0.45	
6	0.63	0.58	0.63	0.65	0.22	0.22	
7	-	-	-	-	0.44	0.44	
8	-	-	-	-	0.44	0.41	

Comparison with Existing Materials

- Q-factor: Peak sharpness
- Our material: Q=273 (Simulation), Q= 188 (Realized)
- Highest known Q-factor: 200 (2D grating coupled surface phonon polaritons, 2008)
 - Large unwanted peaks: Poor FOM = 0.02
 - High cost for nanofabrication

Quantum annealing

 Solves quadratic unconstrained binary optimization (QUBO)

$$\min_{\mathbf{z}\in\{-1,1\}^m}\sum_i h_i z_i + \sum_{i\leq j} g_{ij} z_i z_j.$$

- D-wave 2000Q
 - Implementation of quantum annealing with superconducting semiconductor
 - Annealing time 170µs, up to 64 bits
 - Machine in Canada, accessed via API from Japan

Principle of quantum annealing

- QUBO + transverse field term
- Qubit has distribution of up and down
- When measured, up or down appears
- First, strong transverse field is applied
 [up,down] = [0.5,0.5] is the ground state
- Then transverse field is weakened slowly

 Ground state slides to global optimum of QUBO
- Conceptually similar to regularization path following (?)

Using QA for black-box optimization

- GP's acquisition function is not QUBO (BAD!)
- Use factorization machine instead

$$y(\mathbf{x}) = \sum_{i=1}^{N} w_i x_i + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} v_{ik} v_{jk} x_i x_j,$$

- A learned model becomes QUBO
- 50 annealing at a time, select the best unseen solution

Comparison to existing materials

Conclusion

- Designing complex materials is beyond ability of human intuition
- New "class" of materials enabled by ML & QA
 - Tsuda Lab, UTokyo
 - Koki Kitai
 - Ryo Tamura
 - Dept of Mech Eng, UTokyo
 - Junichiro Shiomi
 - Takuma Shiga
 - Shenghong Ju
 - Lei Fang
 - Jiang Guo
 - Makoto Kashiwagi

- Niigata Univ
 - Atsushi Sakurai
 - Kyohei Yada
 - Hideyuki Okada
 - Tetsushi Shimomura
- NIMS
 - Zhufeng Hou
 - Tadaaki Nagao
- Waseda Univ
 - Shu Tanaka