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Introduction Motivation

Motivation

Recommendation Autonomous Car Healthcare

Goal: Identify the best (causal) policy.
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Introduction Motivation

Personalization
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Introduction Motivation

Healthcare
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Introduction Problem Setup

A Causal Policy

X : Context, T : Treatment, Y: Outcome, π: Policy

Ex: X = {age, gender}, T = pills, Y = cholesterol level.
A context x ∼ ρ.
A treatment t ∼ π(t | x) for (x , t) ∈ X × T .
An outcome y ∼ η(y |x , t) for (x , t, y) ∈ X × T × Y.

Context X Policy π
Treatmnt

T
Outcome

Y

0The term “context” and “covariate” may be used interchangeably.
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Introduction Problem Setup

How to Identify Good Policies

Randomized Exp. (A/B Test)

X Gold standard in science
× Expensive, time-consuming, or

unethical

Observational Studies

X No randomization
X Cheaper, safer, and more ethical
× Selection bias
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Counterfactual Mean Embedding Potential Outcome Framework

Potential Outcome Framework

Standard framework in social science, econometric, and healthcare.

Treatment T ∈ {0, 1} and outcome Y0,Y1 ∈ R.
I T ∈ {placebo, injection}
I Y0 = cholesterol level if T = placebo
I Y1 = cholesterol level if T = injection.

Unit Y1 Y0 Y1 − Y0

A 15 20 -5
B 10 12 -2
C 5 11 -6
D 12 19 -7

Individual treatment effect: ITE(i) := Y1(i)− Y0(i)
Fundamental Problem of Causal Inference (FPCI)

(Rubin 2005)
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Counterfactual Mean Embedding Potential Outcome Framework

Rubin’s Causal Model

Causal effect is defined w.r.t. the counterfactual outcomes.
I What would the value of Y1 have been had the subject get the injection?

Covariates (X) associated with each unit are available.
Confounders (Z) affecting both T and Y simultaneously may exist.
A propensity score:

ρ(x) := P(T = 1 |X = x).

We observe a dataset

D = {(x1, t1, y1), (x2, t2, y2), . . . , (xn, tn, yn)}

where (xi , ti , yi) := (covariate, received treatment, outcome).
The treatment assignment mechanism is not known.

(Rubin 2005)
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Counterfactual Mean Embedding Potential Outcome Framework

Rubin’s Causal Model

Main Assumptions
Stable unit treatment value assumption (SUTVA): The outcome of the
ith unit is independent of those of other units and their received treatments.
Unconfoundedness/ignorability/exogeneity

Y0,Y1 ⊥⊥ T |X

Treatment positivity: For all x and t,

0 < P(T = t |X = x) < 1.

Theorem (Propensity Score)
Let ρ(X) = P(T = 1 |X) be the propensity score. Suppose that ignorability holds.
Then we have

Y0,Y1 ⊥⊥ T | ρ(X).
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Counterfactual Mean Embedding Potential Outcome Framework

Counterfactual Distribution

π0: null/logged policy, π1: target/new policy.

Our goal is to answer the following counterfactual question:
“How would the outcomes have changed, if we had switched
from the null policy π0 to the target policy π1?”

Let Yi be the outcome and Zi = (Xi ,Ti) for i ∈ {0, 1}.
Chernozhukov et al. (2013) defines a counterfactual distribution

PY1
:=

∫
PY0|Z0

(y |z)dPZ1
(z).

Under the main assumptions, the counterfactual distribution PY1

corresponds to the interventional distribution P∗
Y1

.
We will construct an estimate for PY1

without any sample from it.
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Counterfactual Mean Embedding Kernel Mean Embedding of Distributions

Implicit Representation of Distributions

x

p(x) RKHS H

µP

µQ

P
Q

Kernel Mean Embedding (Berlinet and Thomas-Agnan 2004, Smola et al. 2007)

Let φ(x) = k(x , ·) be a canonical feature map from X into H. A kernel mean
embedding (KME) of a distribution P over X is defined by

µP :=

∫
X
φ(x)dP(x) =

∫
X

k(x , ·)dP(x).

The embedding µP is well-defined if
1 the kernel k is measurable and
2 the kernel is bounded, i.e., k(x , x) < ∞ for all x ∈ X .
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Counterfactual Mean Embedding Kernel Mean Embedding of Distributions

Embedding of Conditional Distributions

X

Y

H G
CYXC−1

XXk(x , ·)

µY |X=xk(x , ·) CYXC−1
XX

y

p(y |x)

P(Y |X = x)

The conditional mean embedding of P(Y |X) can be defined as

UY |X : H → G, UY |X := CYXC−1
XX
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Counterfactual Mean Embedding Causal Learning

Counterfactual Mean Embedding

Recall that we have π0: null/logged policy, π1: target/new policy.

An embedding of PY1
=

∫
PY0|Z0

(y |z)dPZ1
(z) can be defined by

µY1
:=

∫
ϕ(y)dPY1(y) =

∫∫
ϕ(y)dPY0|Z0

(y |z)dPZ1(z) = CY0Z0C−1
Z0

µZ1
.

Theorem (causal interpretation)
Suppose that exogeneity holds, i.e., Y0,Y1 ⊥⊥ T |X almost surely for X and that
common support assumption holds. Then,

µY1
= µ∗

Y1
,

where µ∗
Y1

denotes an RKHS embedding of the interventional distribution P∗
Y1

.
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Counterfactual Mean Embedding Causal Learning

Counterfactual Mean Embedding

Proposition (empirical estimate)
Given samples (z1, y1), . . . , (zn, yn) from PY0Z0(z, y) and z ′

1, . . . , z ′
m from PZ1(z).

Ψ = [ϕ(y1), . . . , ϕ(yn)]
>

Kij = k(zi , zj), Lij = k(zi , z ′
j )

1n = (1/m, . . . , 1/m)>

µ̂Y1
= ĈY0Z0

(ĈZ0
+ εI)−1µ̂Z1

= Ψ(K + nεI)−1L1n =
n∑

i=1

βiϕ(yi).

Theorem (uniform convergence)
Under some technical assumptions, if εn decays to zero sufficiently slowly as
n → ∞ and limn→∞ ‖µ̂Z1

− µZ1
‖H = 0, we have that, as n → ∞,∥∥µ̂Y1

− µY1

∥∥
G

p−→ 0.
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Counterfactual Mean Embedding Causal Learning

Convergence Rate

Theorem
Let g := dPZ1/dPZ0 and θ(z, z̃) := E[`(Y0, Ỹ0)|Z0 = z, Z̃0 = z̃]. Assume that

g ∈ Range(Tα) for 0 < α ≤ 1 and that
θ ∈ Range((T ⊗ T )β) for 0 < β ≤ 1.

Then for εn = cn−1/(1+β+max(1−α,α)) with c > 0 being arbitrary but independent
of n, we have∥∥∥ĈY0Z0 (ĈZ0 + εnI)−1µ̂Z1 − µY1

∥∥∥
F
= Op

(
n−(α+β)/(2(1+β+max(1−α,α)))

)
as n → ∞.

Remark:
α controls the overlapping between PZ1

and PZ0
.

β controls the smoothness of PY0|Z0
(y |z).

Our estimator has a “doubly-robust”-like property.
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Policy Evaluation Policy Evaluation with CME

Policy Evaluation
Consider a recommendation platform:

I Context: User information x ∈ X
I Treatment: Recommendation policy t ∼ π(t|x)
I Outcome: Reward y = δ(x , t)

Given the logged data from an initial policy π0 and target policy π1:

D0 = {(x1, t1, y1), . . . , (xn, tn, yn)}, D1 = {(x∗
1 , t∗1 ), . . . , (x∗

m, t∗m)}

Assume that P0(y | x ′, t′) = P1(y | x ′, t′). Then, we have

P1(y) =
∫

P1(y | x∗, t∗)dP1(x∗, t∗) =
∫

P0(y | x , t)dP1(x , t)

P1(y) is a counterfactual reward distribution under the new policy π1.
Let Z0 = (X ,T ) and Z1 = (X∗,T ∗).

µP1(y) = CY0Z0
(CZ0Z0

+ εI)−1µZ1
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Experimental Results
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Discussion

Discussion

In policy learning, given a policy πθ, the objective and its gradient are

J(θ) := Ex∼ρXEt∼πθ(t|x)Ey∼η(y|x,t) [δ(x , t, y)]
∇θJ(θ) = Eπθ

[δ(x , t, y)∇θ logπ(t|x)].

The gradient ∇θJ(θ) can be directly estimated by CME.
Several disciplines that make use of the observational studies will benefit
from this work.

I Social science, econometric, healthcare, finance, etc.
Include experimental data to improve the policy.
Incorporate multiple sets of observational data obtained from different
policies.
Our problem is related to (batch) reinforcement learning, policy gradient
methods, and contextual bandit in machine learning.
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