Counterfactual Policy Evaluation in Reproducing Kernel Hilbert Spaces

Krikamol Muandet

Max Planck Institute for Intelligent Systems Tübingen, Germany

Jeju, Korea — February 22, 2019

Acknowledgment

Motonobu Kanagawa U of Tübingen Sorawit Saengkyongam UCL Sanparith Marukatat NECTEC

Olicy Evaluation

3 Policy Evaluation

Motivation

Recommendation

Autonomous Car

Healthcare

Motivation

Recommendation

Autonomous Car

Healthcare

Goal: Identify the best (causal) policy.

Personalization

FIRST VISIT

NEXT VISIT

Healthcare

A Causal Policy

• \mathcal{X} : Context, \mathcal{T} : Treatment, \mathcal{Y} : Outcome, π : Policy

 $^0\mbox{The term}$ "context" and "covariate" may be used interchangeably.

A Causal Policy

- \mathcal{X} : Context, \mathcal{T} : Treatment, \mathcal{Y} : Outcome, π : Policy
- Ex: $\mathcal{X} = \{ age, gender \}, \ \mathcal{T} = pills, \ \mathcal{Y} = cholesterol level.$

Problem Setup

A Causal Policy

- \mathcal{X} : Context, \mathcal{T} : Treatment, \mathcal{Y} : Outcome, π : Policy
- Ex: $\mathcal{X} = \{ age, gender \}, \ \mathcal{T} = pills, \ \mathcal{Y} = cholesterol level.$
- A context $x \sim \rho$.

A Causal Policy

- \mathcal{X} : Context, \mathcal{T} : Treatment, \mathcal{Y} : Outcome, π : Policy
- Ex: $\mathcal{X} = \{ age, gender \}, \ \mathcal{T} = pills, \ \mathcal{Y} = cholesterol level.$
- A context $x \sim \rho$.
- A treatment $t \sim \pi(t \mid x)$ for $(x, t) \in \mathcal{X} \times \mathcal{T}$.

Problem Setup

A Causal Policy

- \mathcal{X} : Context, \mathcal{T} : Treatment, \mathcal{Y} : Outcome, π : Policy
- Ex: $\mathcal{X} = \{ age, gender \}, \ \mathcal{T} = pills, \ \mathcal{Y} = cholesterol level.$
- A context $x \sim \rho$.
- A treatment $t \sim \pi(t \mid x)$ for $(x, t) \in \mathcal{X} \times \mathcal{T}$.
- An outcome $y \sim \eta(y|x, t)$ for $(x, t, y) \in \mathcal{X} \times \mathcal{T} \times \mathcal{Y}$.

|--|

How to Identify Good Policies

Randomized Exp. (A/B Test)

- $\checkmark\,$ Gold standard in science
- $\times\,$ Expensive, time-consuming, or unethical

How to Identify Good Policies

Randomized Exp. (A/B Test)

Observational Studies

- ✓ Gold standard in science
- $\times\,$ Expensive, time-consuming, or unethical

- \checkmark No randomization
- $\checkmark\,$ Cheaper, safer, and more ethical
- \times Selection bias

3 Policy Evaluation

• Standard framework in social science, econometric, and healthcare.

- Standard framework in social science, econometric, and healthcare.
- Treatment $T \in \{0,1\}$ and outcome $Y_0, Y_1 \in \mathbb{R}$.
 - $T \in \{$ placebo, injection $\}$
 - Y_0 = cholesterol level if T = placebo
 - Y_1 = cholesterol level if T = injection.

Unit	Y_1	Y_0	$Y_1 - Y_0$
A	15	20	-5
В	10	12	-2
С	5	11	-6
D	12	19	-7

- Standard framework in social science, econometric, and healthcare.
- Treatment $T \in \{0,1\}$ and outcome $Y_0, Y_1 \in \mathbb{R}$.
 - $T \in \{$ placebo, injection $\}$
 - Y_0 = cholesterol level if T = placebo
 - Y_1 = cholesterol level if T = injection.

Unit	Y_1	Y_0	$Y_1 - Y_0$
А	15	20	-5
В	10	12	-2
С	5	11	-6
D	12	19	-7

• Individual treatment effect: $ITE(i) := Y_1(i) - Y_0(i)$

- Standard framework in social science, econometric, and healthcare.
- Treatment $T \in \{0,1\}$ and outcome $Y_0, Y_1 \in \mathbb{R}$.
 - $T \in \{$ placebo, injection $\}$
 - Y_0 = cholesterol level if T = placebo
 - Y_1 = cholesterol level if T = injection.

Unit	Y_1	Y_0	$Y_1 - Y_0$
Α	15	-	?
В	-	12	?
С	5	-	?
D	-	19	?

- Individual treatment effect: $ITE(i) := Y_1(i) Y_0(i)$
- Fundamental Problem of Causal Inference (FPCI)

- Causal effect is defined w.r.t. the counterfactual outcomes.
 - What would the value of Y_1 have been had the subject get the injection?

- Causal effect is defined w.r.t. the counterfactual outcomes.
 - ▶ What would the value of Y₁ have been had the subject get the injection?
- Covariates (X) associated with each unit are available.

- Causal effect is defined w.r.t. the counterfactual outcomes.
 - What would the value of Y_1 have been had the subject get the injection?
- Covariates (X) associated with each unit are available.
- Confounders (Z) affecting both T and Y simultaneously may exist.

- Causal effect is defined w.r.t. the counterfactual outcomes.
 - ▶ What would the value of Y₁ have been had the subject get the injection?
- Covariates (X) associated with each unit are available.
- Confounders (Z) affecting both T and Y simultaneously may exist.
- A propensity score:

$$\rho(\mathbf{x}) := \mathbb{P}(\mathbf{T} = 1 \,|\, \mathbf{X} = \mathbf{x}).$$

- Causal effect is defined w.r.t. the counterfactual outcomes.
 - ▶ What would the value of Y₁ have been had the subject get the injection?
- Covariates (X) associated with each unit are available.
- Confounders (Z) affecting both T and Y simultaneously may exist.
- A propensity score:

$$\rho(\mathbf{x}) := \mathbb{P}(T = 1 \mid \mathbf{X} = \mathbf{x}).$$

• We observe a dataset

$$\mathcal{D} = \{(x_1, t_1, y_1), (x_2, t_2, y_2), \dots, (x_n, t_n, y_n)\}$$

where $(x_i, t_i, y_i) :=$ (covariate, received treatment, outcome).

- Causal effect is defined w.r.t. the counterfactual outcomes.
 - ▶ What would the value of Y₁ have been had the subject get the injection?
- Covariates (X) associated with each unit are available.
- Confounders (Z) affecting both T and Y simultaneously may exist.
- A propensity score:

$$\rho(\mathbf{x}) := \mathbb{P}(T = 1 \mid \mathbf{X} = \mathbf{x}).$$

• We observe a dataset

$$\mathcal{D} = \{(x_1, t_1, y_1), (x_2, t_2, y_2), \dots, (x_n, t_n, y_n)\}$$

where $(x_i, t_i, y_i) :=$ (covariate, received treatment, outcome).

• The treatment assignment mechanism is not known.

Main Assumptions

- Stable unit treatment value assumption (SUTVA): The outcome of the *i*th unit is independent of those of other units and their received treatments.
- Unconfoundedness/ignorability/exogeneity

 $Y_0, Y_1 \perp T \mid X$

• Treatment positivity: For all x and t,

 $0 < \mathbb{P}(T = t \mid X = x) < 1.$

Main Assumptions

- Stable unit treatment value assumption (SUTVA): The outcome of the *i*th unit is independent of those of other units and their received treatments.
- Unconfoundedness/ignorability/exogeneity

 $Y_0, Y_1 \perp T \mid X$

• Treatment positivity: For all x and t,

$$0 < \mathbb{P}(T = t \mid X = x) < 1.$$

Theorem (Propensity Score)

Let $\rho(X) = \mathbb{P}(T = 1 | X)$ be the propensity score. Suppose that ignorability holds. Then we have

$$Y_0, Y_1 \perp\!\!\!\perp T \mid \rho(X).$$

• π_0 : null/logged policy, π_1 : target/new policy.

- π_0 : null/logged policy, π_1 : target/new policy.
- Our goal is to answer the following counterfactual question:

"How would the outcomes have changed, if we had switched from the null policy π_0 to the target policy π_1 ?"

- π_0 : null/logged policy, π_1 : target/new policy.
- Our goal is to answer the following counterfactual question:

"How would the outcomes have changed, if we had switched from the null policy π_0 to the target policy π_1 ?"

• Let Y_i be the outcome and $Z_i = (X_i, T_i)$ for $i \in \{0, 1\}$.

- π_0 : null/logged policy, π_1 : target/new policy.
- Our goal is to answer the following counterfactual question:

"How would the outcomes have changed, if we had switched from the null policy π_0 to the target policy π_1 ?"

- Let Y_i be the outcome and $Z_i = (X_i, T_i)$ for $i \in \{0, 1\}$.
- Chernozhukov et al. (2013) defines a counterfactual distribution

$$\mathbb{P}_{\mathbf{Y}_1} := \int \mathbb{P}_{\mathbf{Y}_0|Z_0}(y|z) \, \mathrm{d}\mathbb{P}_{Z_1}(z).$$

- π_0 : null/logged policy, π_1 : target/new policy.
- Our goal is to answer the following counterfactual question:

"How would the outcomes have changed, if we had switched from the null policy π_0 to the target policy π_1 ?"

- Let Y_i be the outcome and $Z_i = (X_i, T_i)$ for $i \in \{0, 1\}$.
- Chernozhukov et al. (2013) defines a counterfactual distribution

$$\mathbb{P}_{\mathsf{Y}_1} := \int \mathbb{P}_{\mathsf{Y}_0|Z_0}(y|z) \, \mathrm{d}\mathbb{P}_{Z_1}(z).$$

• Under the main assumptions, the counterfactual distribution \mathbb{P}_{Y_1} corresponds to the interventional distribution $\mathbb{P}_{Y_1}^*$.

- π_0 : null/logged policy, π_1 : target/new policy.
- Our goal is to answer the following counterfactual question:

"How would the outcomes have changed, if we had switched from the null policy π_0 to the target policy π_1 ?"

- Let Y_i be the outcome and $Z_i = (X_i, T_i)$ for $i \in \{0, 1\}$.
- Chernozhukov et al. (2013) defines a counterfactual distribution

$$\mathbb{P}_{Y_1} := \int \mathbb{P}_{Y_0|Z_0}(y|z) \,\mathrm{d}\mathbb{P}_{Z_1}(z).$$

- Under the **main assumptions**, the counterfactual distribution \mathbb{P}_{Y_1} corresponds to the **interventional** distribution $\mathbb{P}_{Y_1}^*$.
- We will construct an estimate for \mathbb{P}_{Y_1} without any sample from it.

Implicit Representation of Distributions

Kernel Mean Embedding (Berlinet and Thomas-Agnan 2004, Smola et al. 2007) Let $\phi(x) = k(x, \cdot)$ be a canonical feature map from \mathcal{X} into \mathcal{H} . A kernel mean embedding (KME) of a distribution \mathbb{P} over \mathcal{X} is defined by

$$\boldsymbol{\mu}_{\mathbb{P}} := \int_{\mathcal{X}} \phi(x) \, \mathrm{d}\mathbb{P}(x) = \int_{\mathcal{X}} k(x, \cdot) \, \mathrm{d}\mathbb{P}(x).$$

Implicit Representation of Distributions

Kernel Mean Embedding (Berlinet and Thomas-Agnan 2004, Smola et al. 2007) Let $\phi(x) = k(x, \cdot)$ be a canonical feature map from \mathcal{X} into \mathcal{H} . A kernel mean embedding (KME) of a distribution \mathbb{P} over \mathcal{X} is defined by

$$\boldsymbol{\mu}_{\mathbb{P}} := \int_{\mathcal{X}} \phi(x) \, \mathrm{d}\mathbb{P}(x) = \int_{\mathcal{X}} k(x, \cdot) \, \mathrm{d}\mathbb{P}(x).$$

The embedding $\mu_{\mathbb{P}}$ is well-defined if

- the kernel k is measurable and
- **2** the kernel is bounded, i.e., $k(x,x) < \infty$ for all $x \in \mathcal{X}$.

Embedding of Conditional Distributions

The conditional mean embedding of $\mathbb{P}(Y | X)$ can be defined as

$$\mathcal{U}_{Y|X}: \mathcal{H} \to \mathcal{G}, \qquad \mathcal{U}_{Y|X}:=\mathcal{C}_{YX}\mathcal{C}_{XX}^{-1}$$

• Recall that we have π_0 : null/logged policy, π_1 : target/new policy.

- Recall that we have π_0 : null/logged policy, π_1 : target/new policy.
- An embedding of $\mathbb{P}_{Y_1} = \int \mathbb{P}_{Y_0|Z_0}(y|z) \,\mathrm{d}\mathbb{P}_{Z_1}(z)$ can be defined by

$$\boldsymbol{\mu}_{\mathbf{Y}_1} := \int \varphi(\mathbf{y}) \, \mathrm{d}\mathbb{P}_{\mathbf{Y}_1}(\mathbf{y}) = \iint \varphi(\mathbf{y}) \, \mathrm{d}\mathbb{P}_{\mathbf{Y}_0|\mathbf{Z}_0}(\mathbf{y}|\mathbf{z}) \, \mathrm{d}\mathbb{P}_{\mathbf{Z}_1}(\mathbf{z}) = \mathcal{C}_{\mathbf{Y}_0\mathbf{Z}_0}\mathcal{C}_{\mathbf{Z}_0}^{-1}\boldsymbol{\mu}_{\mathbf{Z}_1}.$$

- Recall that we have π_0 : null/logged policy, π_1 : target/new policy.
- An embedding of $\mathbb{P}_{Y_1} = \int \mathbb{P}_{Y_0|Z_0}(y|z) \,\mathrm{d}\mathbb{P}_{Z_1}(z)$ can be defined by

$$\boldsymbol{\mu}_{\mathbf{Y}_1} := \int \varphi(\mathbf{y}) \, \mathrm{d}\mathbb{P}_{\mathbf{Y}_1}(\mathbf{y}) = \iint \varphi(\mathbf{y}) \, \mathrm{d}\mathbb{P}_{\mathbf{Y}_0|\mathbf{Z}_0}(\mathbf{y}|\mathbf{z}) \, \mathrm{d}\mathbb{P}_{\mathbf{Z}_1}(\mathbf{z}) = \mathcal{C}_{\mathbf{Y}_0\mathbf{Z}_0}\mathcal{C}_{\mathbf{Z}_0}^{-1}\boldsymbol{\mu}_{\mathbf{Z}_1}.$$

Theorem (causal interpretation)

Suppose that exogeneity holds, i.e., $Y_0, Y_1 \perp\!\!\!\perp T | X$ almost surely for X and that common support assumption holds. Then,

$$\boldsymbol{\mu}_{\boldsymbol{Y}_1} = \boldsymbol{\mu}_{\boldsymbol{Y}_1}^*,$$

where $\mu_{Y_1}^*$ denotes an RKHS embedding of the **interventional distribution** $\mathbb{P}_{Y_1}^*$.

Proposition (empirical estimate)

Given samples $(z_1, y_1), \ldots, (z_n, y_n)$ from $\mathbb{P}_{Y_0Z_0}(z, y)$ and z'_1, \ldots, z'_m from $\mathbb{P}_{Z_1}(z)$.

•
$$\Psi = [\varphi(\mathbf{y}_1), \dots, \varphi(\mathbf{y}_n)]^\top$$

• $\mathbf{K}_{ij} = k(z_i, z_j), \qquad \mathbf{L}_{ij} = k(z_i, z_j')$
• $\mathbf{1}_n = (1/m, \dots, 1/m)^\top$
 $\hat{\boldsymbol{\mu}}_{Y_1} = \widehat{\mathcal{C}}_{Y_0 Z_0} (\widehat{\mathcal{C}}_{Z_0} + \varepsilon \mathcal{I})^{-1} \hat{\boldsymbol{\mu}}_{Z_1} = \Psi(\mathbf{K} + n\varepsilon \mathbf{I})^{-1} \mathbf{L} \mathbf{1}_n = \sum_{i=1}^n \beta_i \varphi(\mathbf{y}_i).$

Proposition (empirical estimate)

Given samples $(z_1, y_1), \ldots, (z_n, y_n)$ from $\mathbb{P}_{Y_0Z_0}(z, y)$ and z'_1, \ldots, z'_m from $\mathbb{P}_{Z_1}(z)$.

•
$$\Psi = [\varphi(y_1), \dots, \varphi(y_n)]^\top$$

• $\mathbf{K}_{ij} = k(z_i, z_j), \qquad \mathbf{L}_{ij} = k(z_i, z'_j)$
• $\mathbf{1}_n = (1/m, \dots, 1/m)^\top$
 $\hat{\mu}_{Y_1} = \widehat{\mathcal{C}}_{Y_0 Z_0} (\widehat{\mathcal{C}}_{Z_0} + \varepsilon \mathcal{I})^{-1} \hat{\mu}_{Z_1} = \Psi(\mathbf{K} + n\varepsilon \mathbf{I})^{-1} \mathbf{L} \mathbf{1}_n = \sum_{i=1}^n \beta_i \varphi(y_i).$

Theorem (uniform convergence)

Under some technical assumptions, if ε_n decays to zero sufficiently slowly as $n \to \infty$ and $\lim_{n \to \infty} \|\hat{\mu}_{Z_1} - \mu_{Z_1}\|_{\mathcal{H}} = 0$, we have that, as $n \to \infty$,

$$\|\hat{\boldsymbol{\mu}}_{\boldsymbol{Y}_1} - \boldsymbol{\mu}_{\boldsymbol{Y}_1}\|_{\mathcal{G}} \xrightarrow{\boldsymbol{p}} 0.$$

Convergence Rate

Theorem

Let $g := d\mathbb{P}_{Z_1}/d\mathbb{P}_{Z_0}$ and $\theta(z, \tilde{z}) := \mathbb{E}[\ell(Y_0, \tilde{Y}_0)|Z_0 = z, \tilde{Z}_0 = \tilde{z}]$. Assume that • $g \in \text{Range}(T^{\alpha})$ for $0 < \alpha \leq 1$ and that

• $\theta \in \text{Range}((T \otimes T)^{\beta})$ for $0 < \beta \leq 1$.

Then for $\varepsilon_n = cn^{-1/(1+\beta+\max(1-\alpha,\alpha))}$ with c > 0 being arbitrary but independent of n, we have

$$\left\|\widehat{\mathcal{C}}_{Y_0Z_0}(\widehat{\mathcal{C}}_{Z_0}+\varepsilon_n I)^{-1}\widehat{\mu}_{Z_1}-\mu_{Y_1}\right\|_{\mathcal{F}}=O_p\left(n^{-(\alpha+\beta)/(2(1+\beta+\max(1-\alpha,\alpha)))}\right)$$

as $n \to \infty$.

Convergence Rate

Theorem

Let $g := d\mathbb{P}_{Z_1}/d\mathbb{P}_{Z_0}$ and $\theta(z, \tilde{z}) := \mathbb{E}[\ell(Y_0, \tilde{Y}_0)|Z_0 = z, \tilde{Z}_0 = \tilde{z}]$. Assume that • $g \in \text{Range}(T^{\alpha})$ for $0 < \alpha \leq 1$ and that

• $\theta \in \text{Range}((T \otimes T)^{\beta})$ for $0 < \beta \leq 1$.

Then for $\varepsilon_n = cn^{-1/(1+\beta+\max(1-\alpha,\alpha))}$ with c > 0 being arbitrary but independent of n, we have

$$\left\|\widehat{\mathcal{C}}_{Y_0Z_0}(\widehat{\mathcal{C}}_{Z_0}+\varepsilon_nI)^{-1}\widehat{\mu}_{Z_1}-\mu_{Y_1}\right\|_{\mathcal{F}}=O_p\left(n^{-(\alpha+\beta)/(2(1+\beta+\max(1-\alpha,\alpha)))}\right)$$

as $n o \infty$.

Remark:

- α controls the overlapping between \mathbb{P}_{Z_1} and \mathbb{P}_{Z_0} .
- β controls the smoothness of $\mathbb{P}_{Y_0|Z_0}(y|z)$.
- Our estimator has a "doubly-robust"-like property.

Introduction

2 Counterfactual Mean Embedding

Olicy Evaluation

- Consider a recommendation platform:
 - **Context:** User information $x \in \mathcal{X}$
 - **Treatment:** Recommendation policy $t \sim \pi(t|x)$
 - **Outcome:** Reward $y = \delta(x, t)$

- Consider a recommendation platform:
 - **Context:** User information $x \in \mathcal{X}$
 - **Treatment:** Recommendation policy $t \sim \pi(t|x)$
 - **Outcome:** Reward $y = \delta(x, t)$
- Given the **logged data** from an initial policy π_0 and target policy π_1 :

 $\mathcal{D}_0 = \{(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)\}, \quad \mathcal{D}_1 = \{(x_1^*, t_1^*), \dots, (x_m^*, t_m^*)\}$

- Consider a recommendation platform:
 - **Context:** User information $x \in \mathcal{X}$
 - **Treatment:** Recommendation policy $t \sim \pi(t|x)$
 - **Outcome:** Reward $y = \delta(x, t)$
- Given the **logged data** from an initial policy π_0 and target policy π_1 :

 $\mathcal{D}_0 = \{(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)\}, \quad \mathcal{D}_1 = \{(x_1^*, t_1^*), \dots, (x_m^*, t_m^*)\}$

• Assume that $\mathbb{P}_0(y\,|\,x',t')=\mathbb{P}_1(y\,|\,x',t').$ Then, we have

$$\mathbb{P}_{1}(y) = \int \mathbb{P}_{1}(y \,|\, x^{*}, t^{*}) \,\mathrm{d}\mathbb{P}_{1}(x^{*}, t^{*}) = \int \mathbb{P}_{0}(y \,|\, x, t) \,\mathrm{d}\mathbb{P}_{1}(x, t)$$

- Consider a recommendation platform:
 - **Context:** User information $x \in \mathcal{X}$
 - **Treatment:** Recommendation policy $t \sim \pi(t|x)$
 - **Outcome:** Reward $y = \delta(x, t)$
- Given the **logged data** from an initial policy π_0 and target policy π_1 :

 $\mathcal{D}_0 = \{(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)\}, \quad \mathcal{D}_1 = \{(x_1^*, t_1^*), \dots, (x_m^*, t_m^*)\}$

• Assume that $\mathbb{P}_0(y\,|\,x',t')=\mathbb{P}_1(y\,|\,x',t').$ Then, we have

$$\mathbb{P}_{1}(y) = \int \mathbb{P}_{1}(y \,|\, x^{*}, t^{*}) \,\mathrm{d}\mathbb{P}_{1}(x^{*}, t^{*}) = \int \mathbb{P}_{0}(y \,|\, x, t) \,\mathrm{d}\mathbb{P}_{1}(x, t)$$

• $\mathbb{P}_1(y)$ is a **counterfactual reward distribution** under the new policy π_1 .

- Consider a recommendation platform:
 - **Context:** User information $x \in \mathcal{X}$
 - **Treatment:** Recommendation policy $t \sim \pi(t|x)$
 - **Outcome:** Reward $y = \delta(x, t)$
- Given the **logged data** from an initial policy π_0 and target policy π_1 :

 $\mathcal{D}_0 = \{(x_1, t_1, y_1), \dots, (x_n, t_n, y_n)\}, \quad \mathcal{D}_1 = \{(x_1^*, t_1^*), \dots, (x_m^*, t_m^*)\}$

• Assume that $\mathbb{P}_0(y\,|\,x',t')=\mathbb{P}_1(y\,|\,x',t').$ Then, we have

$$\mathbb{P}_{1}(y) = \int \mathbb{P}_{1}(y \,|\, x^{*}, t^{*}) \,\mathrm{d}\mathbb{P}_{1}(x^{*}, t^{*}) = \int \mathbb{P}_{0}(y \,|\, x, t) \,\mathrm{d}\mathbb{P}_{1}(x, t)$$

P₁(y) is a counterfactual reward distribution under the new policy π₁.
Let Z₀ = (X, T) and Z₁ = (X*, T*).

$$\boldsymbol{\mu}_{\mathbb{P}_1(\boldsymbol{y})} = \mathcal{C}_{\boldsymbol{Y}_0\boldsymbol{Z}_0}(\mathcal{C}_{\boldsymbol{Z}_0\boldsymbol{Z}_0} + \varepsilon \mathcal{I})^{-1}\boldsymbol{\mu}_{\boldsymbol{Z}_1}$$

Experimental Results

Dataset: Microsoft Learning to Rank Challenge dataset (MSLR-WEB30K)

Introduction

2 Counterfactual Mean Embedding

3 Policy Evaluation

$$J(\boldsymbol{\theta}) := \mathbb{E}_{\mathbf{x} \sim \rho_{\mathbf{x}}} \mathbb{E}_{t \sim \pi_{\boldsymbol{\theta}}(t|\mathbf{x})} \mathbb{E}_{\mathbf{y} \sim \eta(\mathbf{y}|\mathbf{x},t)} \left[\delta(\mathbf{x},t,\mathbf{y}) \right]$$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} [\delta(\mathbf{x},t,\mathbf{y}) \nabla_{\boldsymbol{\theta}} \log \pi(t|\mathbf{x})].$$

• In policy learning, given a policy π_{θ} , the objective and its gradient are

$$J(\boldsymbol{\theta}) := \mathbb{E}_{\mathbf{x} \sim \rho_{\mathbf{x}}} \mathbb{E}_{t \sim \pi_{\boldsymbol{\theta}}(t|\mathbf{x})} \mathbb{E}_{\mathbf{y} \sim \eta(\mathbf{y}|\mathbf{x},t)} \left[\delta(\mathbf{x}, t, \mathbf{y}) \right]$$
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} [\delta(\mathbf{x}, t, \mathbf{y}) \nabla_{\boldsymbol{\theta}} \log \pi(t|\mathbf{x})].$$

• The gradient $\nabla_{\theta} J(\theta)$ can be directly estimated by CME.

$$J(\theta) := \mathbb{E}_{x \sim \rho_X} \mathbb{E}_{t \sim \pi_{\theta}(t|x)} \mathbb{E}_{y \sim \eta(y|x,t)} [\delta(x,t,y)]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\delta(x,t,y) \nabla_{\theta} \log \pi(t|x)].$$

- The gradient $\nabla_{\theta} J(\theta)$ can be directly estimated by CME.
- Several disciplines that make use of the **observational studies** will benefit from this work.
 - Social science, econometric, healthcare, finance, etc.

$$J(\theta) := \mathbb{E}_{x \sim \rho_X} \mathbb{E}_{t \sim \pi_{\theta}(t|x)} \mathbb{E}_{y \sim \eta(y|x,t)} [\delta(x,t,y)]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\delta(x,t,y) \nabla_{\theta} \log \pi(t|x)].$$

- The gradient $\nabla_{\theta} J(\theta)$ can be directly estimated by CME.
- Several disciplines that make use of the **observational studies** will benefit from this work.
 - Social science, econometric, healthcare, finance, etc.
- Include experimental data to improve the policy.

$$J(\theta) := \mathbb{E}_{x \sim \rho_X} \mathbb{E}_{t \sim \pi_{\theta}(t|x)} \mathbb{E}_{y \sim \eta(y|x,t)} [\delta(x,t,y)]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\delta(x,t,y) \nabla_{\theta} \log \pi(t|x)].$$

- The gradient $\nabla_{\theta} J(\theta)$ can be directly estimated by CME.
- Several disciplines that make use of the **observational studies** will benefit from this work.
 - Social science, econometric, healthcare, finance, etc.
- Include experimental data to improve the policy.
- Incorporate multiple sets of observational data obtained from different policies.

$$J(\theta) := \mathbb{E}_{x \sim \rho_X} \mathbb{E}_{t \sim \pi_{\theta}(t|x)} \mathbb{E}_{y \sim \eta(y|x,t)} [\delta(x,t,y)]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\delta(x,t,y) \nabla_{\theta} \log \pi(t|x)].$$

- The gradient $\nabla_{\theta} J(\theta)$ can be directly estimated by CME.
- Several disciplines that make use of the **observational studies** will benefit from this work.
 - Social science, econometric, healthcare, finance, etc.
- Include experimental data to improve the policy.
- Incorporate multiple sets of observational data obtained from different policies.
- Our problem is related to (batch) reinforcement learning, policy gradient methods, and contextual bandit in machine learning.

Contact

Location	Max Planck Campus Tübingen
Website	http://krikamol.org
Email	krikamol@tuebingen.mpg.de
Publication	http://krikamol.org/research/pubs.htm

References I

- A. Berlinet and C. Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics*. Kluwer Academic Publishers, 2004.
- V. Chernozhukov, I. Fernández-Val, and B. Melly. Inference on counterfactual distributions. *Econometrica*, 81(6):2205–2268, 2013.
- D. B. Rubin. Causal inference using potential outcomes. *Journal of the American Statistical Association*, 100(469):322–331, 2005.
- A. J. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert space embedding for distributions. In *Proceedings of the 18th International Conference on Algorithmic Learning Theory (ALT)*, pages 13–31. Springer-Verlag, 2007.