Introduction	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion

Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing

Jill-Jênn Vie Hisashi Kashima

KJMLW, February 22, 2019

https://arxiv.org/abs/1811.03388

Introduction ●00	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Practic	al intro				

To personalize assessment,

 \Rightarrow need a model of how people respond to exercises.

Example

To personalize this presentation,

 \Rightarrow need a model of how people respond to my slides.

Introduction ●00	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Practic	al intro				

To personalize assessment,

 \rightarrow need a model of how people respond to exercises.

Example

To personalize this presentation,

 \rightarrow need a model of how people respond to my slides.

Introduction ●00	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Practica	al intro				

To personalize assessment,

 \rightarrow need a model of how people respond to exercises.

Example

To personalize this presentation,

ightarrow need a model of how people respond to my slides.

p(understanding) Practical: 0.9 Theoretical: 0.6

Introduction 0●0	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Theoret	tical intro				

Let us assume \boldsymbol{x} is sparse.

Introduction 0●0	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Theore	tical intro				

Let us assume *x* is sparse.

Linear regression $y = \langle \boldsymbol{w}, \boldsymbol{x} \rangle$

Logistic regression $y = \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle)$ where σ is sigmoid.

Neural network $x^{(L+1)} = \sigma(\langle \boldsymbol{w}, \boldsymbol{x}^{(L)} \rangle)$ where σ is ReLU.

What if $\sigma: x \mapsto x^2$ for example?

Introduction ○●○	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Theore	tical intro				

Let us assume *x* is sparse.

Linear regression $y = \langle \boldsymbol{w}, \boldsymbol{x} \rangle$

Logistic regression $y = \sigma(\langle \boldsymbol{w}, \boldsymbol{x} \rangle)$ where σ is sigmoid.

Neural network $x^{(L+1)} = \sigma(\langle \boldsymbol{w}, \boldsymbol{x}^{(L)} \rangle)$ where σ is ReLU.

What if $\sigma: x \mapsto x^2$ for example?

Polynomial kernel $y = \sigma(1 + \langle \boldsymbol{w}, \boldsymbol{x} \rangle)$ where σ is a monomial.

Factorization machine $y = \langle \boldsymbol{w}, \boldsymbol{x} \rangle + ||V\boldsymbol{x}||^2$

Mathieu Blondel, Masakazu Ishihata, Akinori Fujino, and Naonori Ueda (2016). "Polynomial networks and factorization machines: new insights and efficient training algorithms". In: *Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48.* JMLR. org, pp. 850–858

Introduction 00●	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Practic	al intro				

To personalize assessment,

 \rightarrow need a model of how people respond to exercises.

Example

To personalize this presentation,

 \rightarrow need a model of how people respond to my slides.

Introduction 00●	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Practica	al intro				

To personalize assessment,

 \rightarrow need a model of how people respond to exercises.

Example

To personalize this presentation,

ightarrow need a model of how people respond to my slides.

p(understanding) Practical: 0.9 Theoretical: 0.9

Introduction 000	Knowledge Tracing ●000	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000				
Studon	Studente tru overeiges								

Math Learning

Items	5 - 5 = ?	
New student	0	

Introduction 000	Knowledge Tracing ●000	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Student	ts try exerc	cises			

Math Learning

ltems	5 - 5 = ?	17 – 3 = ?	
New student	0	0	

	00000000000	0000000	0000	00000000
o				

Math Learning

Items	5 - 5 = ?	17 – 3 = ?	13 – 7 = ?
New student	0	0	×

000	● 000	0000000000	0000000	0000	00000000
000	0000	00000000000	000000	0000	00000000
Introduction	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion

Math Learning

	lte	ms	5 – 5	5 = ?	17 – 3	s = ?	13 – 7	7 = ?	
	New st	tudent	(0	0		×	<	
Langu	age Lea	rning							
	PRON	VERB	PRON	NOUN	CONJ	PRON	VERB	PRON	NOUN
correct:	She	is	my	mother	and	he	is	my	father
student:	she	is		mader	and	he	is		fhader
label:	0	0	×	×	0	0	0	×	×

Introduction 000	Knowledge Tracing ●000	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
C . 1					

Math Learning

-	lte	ms	5 – 5	5 = ?	17 – 3	8 = ?	13 – 7	′ = ?	
-	New st	tudent	(C	0		×	:	
Langua	age Lea	rning							
	PRON	VERB	PRON	NOUN	CONJ	PRON	VERB	PRON	NOUN
correct:	She	is	my	mother	and	he	is	my	father
student:	she	is		mader	and	he	is		fhader
label:	0	0	×	×	0	0	0	×	×

Challenges

- Users can attempt a same item multiple times
- Users learn over time
- People can make mistakes that do not reflect their knowledge

Predict	ing student	performance:	knowledge tra	cing	
Introduction 000	Knowledge Tracing 0●00	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion

Data

A population of users answering items

• Events: "User *i* answered item *j* correctly/incorrectly"

Side information

- If we know the skills required to solve each item $e.g., +, \times$
- Class ID, school ID, etc.

Goal: classification problem

Predict the performance of new users on existing items \backslash Metric: AUC

Method

Learn parameters of questions from historical data *e.g., difficulty* Measure parameters of new students *e.g., expertise*

Introduction 000	Knowledge Tracing 00●0	Encoding existing models	Knowledge Tracing	Machines	Results 0000	Conclusion 00000000
Existin	ig work					
	Model	В	asically	Original AUC		

Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67

Introduction 000	Knowledge Tracing 00●0	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Existing	g work				

Model	Basically	Original AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86

Introduction 000	Knowledge Tracing 00●0	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Existing	g work				

Model	Basically	Original AUC	Fixed AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86	0.75

Introduction 000	Knowledge Tracing 00●0	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Existing	g work				

Model	Basically	Original AUC	Fixed AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86	0.75
ltem Response Theory (Rasch 1960) (Wilson et al., 2016)	Online Logistic Regression		0.76

Introduction 000	Knowledge Tracing 00●0	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Existing	g work				

Model	Basically	Original AUC	Fixed AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86	0.75
Item Response Theory (Rasch 1960) (Wilson et al., 2016)	Online Logistic Regression		0.76

 $\underline{\mathsf{PFA}} \leq \underline{\mathsf{DKT}} \leq \underline{\mathsf{IRT}} \leq \underline{\mathsf{KTM}}$ LogReg LSTM LogReg FM

Line train	·	and the strength			
Introduction 000	Knowledge Tracing 000●	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000

- Several models for knowledge tracing were developed independently
- In our paper, we prove that our approach is more generic

Our contributions

- Knowledge Tracing Machines unify most existing models
 - Encoding student data to sparse features
 - Then running logistic regression or factorization machines
- Better models found
 - It is better to estimate a bias per item, not only per skill
 - Side information improves performance more than higher dim.

Introduction 000	Knowledge Tracing	Encoding existing models ●0000000000	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Our sm	all dataset				

		user	item	correct
•	User 1 answered Item 1 correct	1	1	1
•	User 1 answered Item 2 incorrect	1	2	0
٩	User 2 answered Item 1 incorrect	2	1	0
•	User 2 answered Item 1 correct	2	2	???
-				

dummy.csv

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Our ap	proach				

• Encode data to sparse features

						,						ктм					
						<u> </u>							PFA				
				←		IRT		\longrightarrow	<u> </u>								;
				Us	ers		Items			Skills			Wins			Fails	
user	item	correct		1	2	Q_1	Q_2	Q ₃	KC1	KC_2	KC ₃	KC1	KC_2	KC ₃	KC1	KC ₂	KC₃
2	2	1		0	1	0	1	0	1	1	0	0	0	0	0	0	0
2	2	0	encode	0	1	0	1	0	1	1	0	1	1	0	0	0	0
2	3	0		0	1	0	1	0	1	1	0	1	1	0	1	1	0
2	3	1		0	1	0	0	1	0	1	1	0	2	0	0	1	0
1	2	777		0	1	0	0	1	0	1	1	0	2	0	0	2	1
1	1	777		1	0	0	1	0	1	1	0	0	0	0	0	0	0
	-			1	0	1	0	0	0	0	0	0	0	0	0	0	0
da	ata.	CSV		sparse matrix X													

Run logistic regression or factorization machines
 ⇒ recover existing models or better models

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Model	1. Item Re	sponse Theory	1		

Learn abilities θ_i for each user *i* Learn easiness e_i for each item *j* such that:

 $Pr(\text{User } i \text{ Item } j \text{ OK}) = \sigma(\theta_i + e_j) \quad \sigma : x \mapsto 1/(1 + \exp(-x))$ logit $Pr(\text{User } i \text{ Item } j \text{ OK}) = \theta_i + e_j$

Really popular model, used for the PISA assessment

Logistic regression

Learn **w** such that logit $Pr(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
Graphic	cally: IRT a	as logistic regr	ession		

Encoding "User i answered Item j" with sparse features:

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle = \theta_i + e_j = \text{logit } Pr(\text{User } i \text{ Item } j \text{ OK})$$

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion
_		<u>_</u>			

Encoding into sparse features

-

	Users		Items			
U_0	U_1	U ₂	<i>I</i> ₀	I_1	I_2	
0	1	0	0	1	0	
0	1	0	0	0	1	
0	0	1	0	1	0	
0	0	1	0	1	0	
0	0	1	0	0	1	

Then logistic regression can be run on the sparse features.

∩h +h	ara'a a prak				
		0000000000			
Introduction	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion

$\cap h +$	hara	' ~ ~ ~	nrah	
0Π, τ	nere	Sd	prou	nem

	Users			ltems				
	U_0	U_1	U_2	<i>I</i> ₀	I_1	I_2	y pred	y
User 1 Item 1 OK	0	1	0	0	1	0	0.575135	1
User 1 Item 2 NOK	0	1	0	0	0	1	0.395036	0
User 2 Item 1 NOK	0	0	1	0	1	0	0.545417	0
User 2 Item 1 <mark>OK</mark>	0	0	1	0	1	0	0.545417	1
User 2 Item 2 NOK	0	0	1	0	0	1	0.366595	0

We predict the same thing when there are several attempts.

000	0000	0000000	0000	00000000
<u> </u>	I C			

Count number of attempts: AFM

Keep a counter of attempts at skill level:

user	item	skill	correct	attempts (for the same skill)
1	1	1	1	0
1	2	2	0	0
2	1	1	0	0
2	1	1	1	1
2	2	2	0	0

<u> </u>					
000	0000	00000000000	000000	0000	00000000
Introduction	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion

Count successes and failures: PFA

Count separately successes W_{ik} and fails F_{ik} of student *i* over skill *k*.

	user	item	skill	correct	wins	fails
	1	1	1	1	0	0
	1	2	2	0	0	0
	2	1	1	0	0	0
	2	1	1	1	0	1
	2	2	2	0	0	0
	easine	ss of ski	ll pe	bonus er success	pe	bonus r failure
w	, 	β_i	Ŷ	γ_j	·	δ_j
		S_k		W _{ik}		F _{ik}
x		1		1		1
	S	kills		Wins		Fails

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000	
		_				

Model 2: Performance Factor Analysis

 W_{ik} : how many successes of user *i* over skill *k* (F_{ik} : #failures)

Learn β_k , γ_k , δ_k for each skill k such that:

logit
$$Pr(\text{User } i \text{ Item } j \text{ OK}) = \sum_{\text{Skill } k \text{ of Item } j} \frac{\beta_k + W_{ik}\gamma_k + F_{ik}\delta_k}{\beta_k}$$

Skills			Wins			Fails		
S_0	S_1	<i>S</i> ₂	S_0	S_1	<i>S</i> ₂	S_0	S_1	<i>S</i> ₂
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Better!					

	6	Skill	s		Wir	าร		Fai	ls	_	
	<i>S</i> ₀	S_1	<i>S</i> ₂	S_0	S_1	<i>S</i> ₂	S_0	S_1	<i>S</i> ₂	y pred	y
User 1 Item 1 OK	0	1	0	0	0	0	0	0	0	0.544	1
User 1 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0
User 2 Item 1 NOK	0	1	0	0	0	0	0	0	0	0.544	0
User 2 Item 1 <mark>OK</mark>	0	1	0	0	0	0	0	1	0	0.633	1
User 2 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0

Introduction 000	Knowledge Tracing	Encoding existing models 0000000000●	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
Test on	a large da	taset: Assistm	nents 2009		

346860 attempts of 4217 students over 26688 items on 123 skills.

model	dim	AUC	improvement
PFA: skills, wins, fails	<mark>0</mark>	<mark>0.685</mark>	+0.07
AFM: skills, attempts	0	0.616	

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines ●000000	Results 0000	Conclusion 00000000
Model	3: a new m	odel (but still	logistic regress	ion)	

model	dim	AUC	improvement
KTM: items, skills, wins, fails	0	0.746	+0.06
IRT: users, items	0	0.691	
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

Here co	omes a new	challenger			
Introduction	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion
000	0000		0●00000	0000	00000000

How to model pairwise interactions with side information?

Logistic Regression

Learn a 1-dim bias for each feature (each user, item, etc.)

Factorization Machines

Learn a 1-dim bias and a k-dim embedding for each feature

How to model pairwise interactions with side information?

If you know user *i* attempted item *j* on mobile (not desktop) How to model it?

y: score of event "user i solves correctly item j"

IRT

$$y = \theta_i + e_j$$

Multidimensional IRT (similar to collaborative filtering)

$$y = heta_{i} + e_{j} + \langle oldsymbol{v}_{\mathsf{user}} oldsymbol{i}, oldsymbol{v}_{\mathsf{item}} oldsymbol{j}
angle$$

How to model pairwise interactions with side information?

If you know user *i* attempted item *j* on mobile (not desktop) How to model it?

y: score of event "user i solves correctly item j"

IRT

$$y = \theta_i + e_j$$

Multidimensional IRT (similar to collaborative filtering)

$$y = heta_i + e_j + \langle \mathbf{v}_{\mathsf{user}} \; \mathbf{i}, \, \mathbf{v}_{\mathsf{item}} \; \mathbf{j}
angle$$

With side information

 $y = \theta_i + e_j + w_{\text{mobile}} + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{item } j} \rangle + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{mobile}} \rangle + \langle \mathbf{v}_{\text{item } j}, \mathbf{v}_{\text{mobile}} \rangle$

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
<u> </u>					

Graphically: logistic regression

000 0000 00000000 000000 0000 0000	Cuenhi	a llu fa ata			
Introduction Knowledge Tracing Encoding existing models Knowledge Tracing Machines Results Conclu	000	0000		0000	00000000

Graphically: factorization machines

Introduction 000	K O	nowledg	ge Traci	ing	Encoding e	xisting models	Knowledge Tracing 00000●0	Machines	Results 0000	Conclusion 00000000
-		6								

Formally: factorization machines

Each user, item, skill k is modeled by bias w_k and embedding v_k .

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines 000000●	Results 0000	Conclusion 00000000
Training	y using MC	МС			

Priors: $w_k \sim \mathcal{N}(\mu_0, 1/\lambda_0) \quad \mathbf{v}_k \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$ Hyperpriors: $\mu_0, \ldots, \mu_n \sim \mathcal{N}(0, 1), \lambda_0, \ldots, \lambda_n \sim \Gamma(1, 1) = U(0, 1)$

Algorithm 1 MCMC implementation of FMs

for each iteration do Sample hyperp. $(\lambda_i, \mu_i)_i$ from posterior using Gibbs sampling Sample weights \boldsymbol{w} Sample vectors \boldsymbol{V} Sample predictions \boldsymbol{y} end for

Implementation in C++ (libFM) with Python wrapper (pyWFM).

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results ●000	Conclusion 00000000
Dataset	ts				

Name	Users	Items	Skills	Skills/i	Entries	Sparsity	Attempts/u
fraction	536	20	8	2.800	10720	0.000	1.000
timss	757	23	13	1.652	17411	0.000	1.000
ecpe	2922	28	3	1.321	81816	0.000	1.000
assistments	4217	26688	123	0.796	346860	0.997	1.014
berkeley	1730	234	29	1.000	562201	0.269	1.901
castor	58939	17	2	1.471	1001963	0.000	1.000

ALIC		. A	deres and		
Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0●00	Conclusion

AUC results on the Assistments dataset

model	dim	AUC	improvement
KTM: items, skills, wins, fails, extra	5	0.819	
KTM: items, skills, wins, fails, extra	0	0.815	+0.05
KTM: items, skills, wins, fails	10	0.767	
KTM: items, skills, wins, fails	0	0.759	+0.02
DKT (Wilson et al., 2016)	100	0.743	+0.05
IRT: users, items	0	0.691	
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

Bonus: interpreting the learned embeddings

What 'hout recurrent neural networks?								
Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion •0000000			

Deep Knowledge Tracing: model the problem as sequence prediction

- Each student on skill q_t has performance a_t
- How to predict outcomes **y** on every skill k?
- Spoiler: by measuring the evolution of a latent state h_t

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000000
<u> </u>		1 I I I I			

Graphically: deep knowledge tracing

Knowledge Tracing Knowledge Tracing Machines Conclusion 0000000

Graphically: there is a MIRT in my DKT

D			T		
000	0000	0000000000	000000	0000	00000000
Introduction	n Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion

Drawback of Deep Knowledge Tracing

DKT does not model individual differences.

Actually, Wilson even managed to beat DKT with (1-dim!) IRT.

By estimating on-the-fly the student's learning ability, we managed to get a better model.

AUC	BKT	IRT	PFA	DKT	DKT-DSC
Assistments 2009	0.67	0.75	0.70	0.73	0.91
Assistments 2012	0.61	0.74	0.67	0.72	0.87
Assistments 2014	0.64	0.67	0.69	0.72	0.87
Cognitive Tutor	0.61	0.81	0.76	0.79	0.81

Sein Minn, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018). "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". In: *Proceedings of the 18th IEEE International Conference on Data Mining*, to appear. URL: https://arxiv.org/abs/1809.08713

Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 0000●000
Take ho	ome messa	ge			

Knowledge tracing machines unify many existing EDM models

- Side information improves performance more than higher *d*
- We can visualize learning (and provide feedback to learners)

Already provides better results than vanilla deep neural networks

• Can be combined with FMs

Do vou	have any	questions?			
Introduction 000	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results 0000	Conclusion 00000●00

Read our article:

https://arxiv.org/abs/1811.03388

Try our tutorial:

https://github.com/jilljenn/ktm

I'm interested in:

- predicting student performance
- recommender systems
- optimizing human learning using reinforcement learning

vie@jill-jenn.net

Introduction	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion
					0000000

Blondel, Mathieu, Masakazu Ishihata, Akinori Fujino, and Naonori Ueda (2016). "Polynomial networks and factorization machines: new insights and efficient training algorithms". In: Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. JMLR. org, pp. 850–858.

Corbett, Albert T and John R Anderson (1994). "Knowledge tracing: Modeling the acquisition of procedural knowledge". In: User modeling and user-adapted interaction 4.4, pp. 253–278.
 Minn, Sein, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018). "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". In: Proceedings of the 18th IEEE International Conference on Data Mining, to appear. URL: https://arxiv.org/abs/1809.08713.

Introduction	Knowledge Tracing	Encoding existing models	Knowledge Tracing Machines	Results	Conclusion
					0000000

- Piech, Chris, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-Dickstein (2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513.
 Rasch, Georg (1960). "Studies in mathematical psychology: I. Probabilistic models for some intelligence and attainment tests.".
 - In:
- Rendle, Steffen (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771.