Weakly Supervised Classification, Robust Learning and More: Overview of Our Recent Advances

Imperfect Information Learning Team

Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project

Machine Learning and Statistical Data Analysis Lab

The University of Tokyo

About Myself

Affiliations:

- Director: RIKEN AIP
- Professor: University of Tokyo
- Consultant: several local startups

Research interests:

- Theory and algorithms of ML
- Real-world applications with partners

Goal:

 Develop practically useful algorithms that have theoretical support Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012

Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012

Sugiyama, Statistical Reinforcement Learning, Chapman and Hall/CRC, 2015

Sugiyama, Introduction to Statistical Machine Learning, Morgan Kaufmann, 2015

Cichocki, Phan, Zhao, Lee, Oseledets, Sugiyama & Mandic, Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations, Now, 2017

Nakajima, Watanabe & Sugiyama, Variational Bayesian Learning Theory, Cambridge University Press, 2019

ESTIMATION IN MACHINE

2

- 1. Weakly supervised classification
- 2. Robust learning
- 3. More

What Is This Tutorial about? ⁴

- Machine learning from big labeled data is highly successful.
 - Speech recognition, image understanding, natural language translation, recommendation...
- However, there are various applications where massive labeled data is not available.
 - Medicine, disaster, infrastructure, robotics, ...

Learning from limited information is promising.

- Not learning from small samples.
- We need many data, but they can be "weak".

Unsupervised Classification ⁶

Gathering labeled data is costly. Let's use unlabeled data that are often cheap to collect:

- Unsupervised classification is typically clustering.
- This works well only when each cluster corresponds to a class.

Semi-Supervised Classification ⁷

Chapelle, Schölkopf & Zien (MIT Press 2006) and many

- Use a large number of unlabeled samples and a small number of labeled samples.
- Find a boundary along the cluster structure induced by unlabeled samples:
 - Sometimes very useful.
 - But not that different from unsupervised classification.

Method 1: PU Classification ⁹

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015) Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016), Kiryo, Niu, du Plessis & Sugiyama (NIPS2017) Hsieh, Niu & Sugiyama (arXiv2018), Kato, Xu, Niu & Sugiyama (arXiv2018) Kwon, Kim, Sugiyama & Paik (arXiv2019), Xu, Li, Niu, Han & Sugiyama (arXiv2019)

Only PU data is available; N data is missing:

Click vs. non-click

From PU data, PN classifiers are trainable!

Method 2: PNU Classification ¹⁰ (Semi-Supervised Classification)

Sakai, du Plessis, Niu & Sugiyama (ICML2017), Sakai, Niu & Sugiyama (MLJ2018)

Let's decompose PNU into PU, PN, and NU:

- Each is solvable.
- Let's combine them!
- Without cluster assumptions, PN classifiers are trainable!

Method 3: Pconf Classification ¹¹

Ishida, Niu & Sugiyama (NeurIPS2018)

Only P data is available, not U data:

- Data from rival companies cannot be obtained.
- Only positive results are reported (publication bias).
- "Only-P learning" is unsupervised.

From Pconf data, PN classifiers are trainable!

Positive confidence

Method 4: UU Classification ¹²

du Plessis, Niu & Sugiyama (TAAI2013) Nan, Niu, Menon & Sugiyama (ICLR2019)

From two sets of unlabeled data with different class priors, PN classifiers are trainable!

Method 5: SU Classification ¹³

Bao, Niu & Sugiyama (ICML2018)

Delicate classification (salary, religion...):

- Highly hesitant to directly answer questions.
- Less reluctant to just say "same as him/her".

From similar and unlabeled data, PN classifiers are trainable!

 $1/\sqrt{n}$

Method 6: Comp. Classification¹⁴

Ishida, Niu & Sugiyama (NIPS2017) Ishida, Niu, Menon & Sugiyama (arXiv2018)

Labeling patterns in multi-class problems:

• Selecting a collect class from a long list of candidate classes is extremely painful.

Complementary labels:

- Specify a class that a pattern does not belong to.
- This is much easier and faster to perform!
- From complementary labels, classifiers are trainable!
 1/1/1

Model vs. Learning Methods ¹⁶

- 1. Weakly supervised classification
- 2. Robust learning
- 3. More

Robustness in Deep Learning ¹⁸

Deep learning is successful.

However, real-world is severe and various types of robustness is needed for reliability:

- Robustness to noisy training data.
- Robustness to changing environments.
- Robustness to noisy test inputs.

Coping with Noisy Training Outputs

Futami, Sato & Sugiyama (AISTATS2018)

- Using a "flat" loss is suitable for robustness:
 - Ex) L¹-loss is more robust than L²-loss.
- However, in Bayesian inference, robust loss is often computationally intractable.
- Our proposal: Not change the loss, but change the KL-div to robust-div in variational inference.

Coping with Noisy Training Outputs

Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurIPS2018)

- Memorization of neural networks:
- Empirically, clean data are fitted faster than noisy data.
- "Co-teaching" between two networks:
 - Select small-loss instances as clean data and teaches themto another network.
 - Experimentally works very well!

A

В

Coping with Changing Environments

Hu, Sato & Sugiyama (ICML2018)

Distributionally robust supervised learning:

- Being robust to the worst test distribution.
- Works well in regression.

Our finding: In classification, this merely results in the same non-robust classifier.

- Since the 0-1 loss is different from a surrogate loss.
- Additional distributional assumption can help:
 - E.g., latent prior change Storkey & Sugiyama (NIPS2007)

Coping with Noisy Test Inputs

Tsuzuku, Sato & Sugiyama (NeurIPS2018)

Adversarial attack can fool a classifier.

Lipschitz-margin training:

"panda"

57.7% confidence

"gibbon" 99.3% confidence

$$\forall \epsilon, \left(\|\epsilon\|_2 < c \implies t_X = \operatorname*{argmax}_i \left\{ F\left(X + \epsilon\right)_i \right\} \right)$$

- Calculate the Lipschitz constant for each layer and derive the Lipschitz constant L_F for entire network. $||F(X) - F(X + \epsilon)||_2 \le L_F ||\epsilon||_2$
- Add prediction margin to soft-labels while training.

$$M_{F,X} := F(X)_{t_X} - \max_{i \neq t_X} \{F(X)_i\}$$

- Provable guarded area for attacks.
- Computationally efficient and empirically robust.

Coping with Noisy Test Inputs ²³

Ni, Charoenphakdee, Honda & Sugiyama (arXiv2019)

In severe applications, better to reject difficult test inputs and ask human to predict instead.

Approach 1: Reject low-confidence prediction

- Existing methods have limitation in loss functions (e.g, logistic loss), resulting in weak performance.
- New rejection criteria for general losses with theoretical convergence guarantee.
- Approach 2: Train classifier and rejector
 - Existing methods only focuses on binary problems.
 - We show that this approach does not converge to the optimal solution in multi-class case.

- 1. Weakly supervised classification
- 2. Robust learning
- 3. More

Estimation of Individual Treatment Effect

Yamane, Yger, Atif & Sugiyama (NeurIPS2018)

25

 $\mathbb{E}[y|x, t = 1] - \mathbb{E}[y|x, t = -1]$

x: subject, y: outcome, t: treatment flag

- **Restriction:** Due to privacy reasons, we can't have (x, y, t)-triplets, but only (x, y)- and (x, t)-pairs without correspondence in x.
- **Result**: Solvable if we have (x, y)- and (x, t)-pairs with two different treatment policies.
- Potential applications: Marketing/political campaign, medicine...

Sparse Matrix Completion ²⁶

Golden standard: Low-rank approximation of a matrix from its sparse observations.

Matrix co-completion for multi-label

classification with missing features and labels.

Feature | Soft labels

Xu, Niu, Han, Tsang, Zhou & Sugiyama (arXiv2018)

Clipped matrix factorization for ceiling effect.

• Allowing values taking beyond their upper-limits improves the recovery accuracy. Teshima, Xu, Sato

& Sugiyama (AAAI2019)

Domain Adaptation (DA) 27

- Unsupervised DA: source labeled and target unlabeled data
- Concern: If source- and target-data distributions are completely different, DA does not work.
 - How to measure distribution discrepancy is the key!
- Proposal: New discrepancy measures

Kuroki, Charoenphakdee, Bao, Honda, Sato & Sugiyama (AAAI2019) Lee, Charoenphakdee, Kuroki & Sugiyama (arXiv2019)

- 1. Weakly supervised classification
- 2. Robust learning
- 3. More

Summary

Many problems are waiting to be solved!

- Need better theory, algorithms, software, hardware, researchers, engineers, business models, ethics...
- Learning from imperfect information:
 - Weakly supervised/noisy training data
 - Reinforcement/imitation learning, bandits
- Reliable deployment of ML systems:
 - Changing environments, adversarial test inputs
 - Bayesian inference

Versatile ML:

Density ratio/difference/derivative