Modeling cancer cells using multi-comics data

February 23, 2019

The Second Korea-Japan Machine Learning Workshop

Sun Kim

Bioinformatics Institute Computer Science and Engineering Seoul National University

Cells, Genetic and Epigenetic Elements

Our Strategies

- Understanding biological sequences
- Capturing a bigger picture
- Modeling complex relationships
- Multi-omics data integration
- Driver gene identification
- Dynamics from time-series data analysis

Today

I will present three of the recently submitted (unpublished) manuscripts towards this goal.

- (1) <u>sequence level</u>: *Ranked k-spectrum kernel for comparative and evolutionary comparison of exons, introns, and CpG islands*
- (2) <u>transcript level</u>: *Cancer subtype classification and modeling by pathway attention and propagation,* (**poster by Sangseon Lee**) and

(3) <u>epigenetic level</u>: *PRISM: Methylation Pattern-based, Reference*free Inference of Subclonal Makeup. (**poster by Dohoon Lee**) Ranked k-spectrum kernel for comparative and evolutionary comparison of exons, introns, and CpG islands

Sangseon Lee, Taeheon Lee, Yung-Kyun Noh, and Sun Kim

Bio & Health Informatics Lab.

Cells, Genetic and Epigenetic Elements

Biological sequence analysis

- The heart of bioinformatics research
 - Alignment of biological sequences
 - Phylogeny
 - Gene prediction
 - Structure prediction

Two type of methods for biological sequence analysis

- Alignment-based method
 - Smith-Waterman or BLAST
 - Successfully used due to accuracy
 - Cost expensive
 - Hard to handle high throughput sequencing data due to variable length and amounts of sequences
- Alignment-free method
 - Based on k-mer frequency vectors
 - Measure distance between two vectors by Euclidean distance or Kullback-Leibler discrepancy.
 - → String kernel method

K-mer based Alignment-free Sequence Analysis

- Among others, two major issues:
 - Length of k-mer
 - Comparison of genome scale sequences

DeepFam: Deep learning based alignmentfree method for protein family modeling and prediction (ISMB 2018)

String kernel method for comparative and evolutionary sequence comparison

- Traditional String kernel method: k-spectrum kernel (Leslie, 2006)
 - Designed for protein sequence classification
 - Various expansions: mismatch, various k-length, and so on
 - Limited for comparative and evolutionary comparison of multiple species
 - Pairwise distance of two genomes \rightarrow combine many pairwise distances is not straightforward
 - k-spectrum kernel is sensitive to over-represented k-mers
- Propose New string kernel method: Ranked K-spectrum string (RKSS) kernel

K-spectrum string kernel

- On the input space \mathcal{X} of all finite length sequences of characters from alphabet \mathcal{A} , $|\mathcal{A}| = l$ (l = 4 for DNA), a feature map from \mathcal{X} to $\mathbb{R}^{l^{k}}$, $\Phi_{k}(x) = (\phi_{\alpha}(x))_{\alpha \in \mathcal{A}^{k}}$ $\phi_{\alpha}(x)$: the number of times α occurs in x
- K-spectrum string kernel

$$K_k(x, y) = \langle \Phi_k(x), \Phi_k(y) \rangle$$

• Kernel distance

$$\widetilde{K}_k(x,y) = \frac{K_k(x,y)}{\sqrt{K_k(x,x)}\sqrt{K_k(y,y)}}$$

$$D_k(x,y) = \sqrt{\widetilde{K}_k(x,x) + \widetilde{K}_k(y,y) - 2\widetilde{K}_k(x,y)}$$

Ranked k-spectrum string (RKSS) kernel

- Two main features of RKSS kernel
 - Build and use **common** k-mers template (= **landmark**) to encapsulate information of common ancestry
 - Use of correlation in rank of k-mers instead of occurrence counts
- RKSS kernel

$$K_k^{Rank}(x, y) = RC(\Phi_k^{common}(x), \Phi_k^{common}(y))$$

RC: the Kendall tau rank correlation Φ_k^{common} : a feature map on the landmark

• Kernel distance

$$\widetilde{K}_k^{Rank}(x,y) = \frac{1 + K_k^{Rank}(x,y)}{2}$$

$$dist(x, y) = \sqrt{\widetilde{K}_{k}^{Rank}(x, x) + \widetilde{K}_{k}^{Rank}(y, y) - 2\widetilde{K}_{k}^{Rank}(x, y)}$$
$$= \sqrt{1 - \widetilde{K}_{k}^{Rank}(x, y)}$$

Effect of rank information

(a) Similarity by RKSS kernel

(b) Similarity by Spectrum kernel

Phylogenetic tree reconstruction on exon, intron, and CpG island

Human CpG Island Sequences

_chr1_788863_789211_CpG: 28 TGGTAAACTGATGAACCC<mark>CG</mark>ACCCTGATGAA<mark>CG</mark>TGAGATGAC<mark>CG</mark>TGTGGTAAACTGATGAACCC<mark>CG</mark>ACC CGTGAGATGACCCGCGTGTGGTAAACTGATGAACCCCCGATGAACCCTGATGAACCGTGAGATGACCCGCCGCCGTGTGGTA AACCCCCGACCCTGATGAACCGTGAGATGACCCGCCGTGTGGTAAACTGATGAACCCCCGACCCTGATCAACCGTGA CCCTGTGTGGTAAACTGATGAACCCCCGACCCTGATGAACATGAGATGACCCGCGTGTGGTAAACTGATGAACCC ATCAACATGAGATGACCCCCC chr1_801975_802338_CpG: 24 CCCGTGCCCTCACGTGGTCCTCCCCTCTGCACTCACATCCCTGACGTCCTCCCCGTGCCCTCACGTGGTCCTCCC CACATCCCTGA<mark>CG</mark>TCCTCC<mark>CG</mark>AGCCCTCA<mark>CG</mark>TGGTCCTCCCTCTGCACTCACATCCCTGA<mark>CG</mark>TCCTCC<mark>CG</mark>TC TGGTCCTCCCCCTGCACTCACATCCCTGA<mark>CG</mark>TCCTCC<mark>CG</mark>AGCCCTCA<mark>CG</mark>TGGTCCTCCCCCTGCACTCACAT TCCTCC<mark>CG</mark>AGCCCTCA<mark>CG</mark>TGGTCCTCCCCCTGCACTCACATCCCTGA<mark>CG</mark>TCCTCC<mark>CG</mark>AGCCCTCA<mark>CG</mark>TGGTC GCACTCACATCCCTGACGTCCTCCCGAGCCCTCACG chr1_805198_805628_CpG: 50 CTGGGCCA<mark>CG</mark>CCCACTCCCCCA<mark>CGCG</mark>GGGAAGGAGCTT<mark>CGCG</mark>CTGC<mark>CG</mark>CCTGGCTGGGGACTGGGCA<mark>CG</mark>CCC CTCCCGGAGCCGGCTGCCACCAGGGGGGCGCGCCCCGCGGTGTCCCGGGAGCCTGGCGCGCCTGTGCAGCGGCCA `GCTCCTGCCCT<mark>CG</mark>CCT<mark>CG</mark>GTCTCTGCCAGGACCC<mark>CG</mark>A<mark>CG</mark>CCCAGC<mark>CG</mark>GACCCTGCCCTCCAG<mark>CG</mark>GGGC<mark>CGCC</mark> GCC<mark>CG</mark>CAACAGCAGCCCCACC<mark>CG</mark>GCATT<mark>CG</mark>G<mark>CGCG</mark>CTC<mark>CGCG</mark>GGGCAGAGGT<mark>CGCG</mark>GTGTCCTCAGGCTGTC CTACAACCCCCA<mark>CG</mark>CCCGGGCCCCCGGGCCCCCGTGATTATATTTGGGCCCCCCGTGTGATTATATTTGACAGGTCTT

CGCTGTTCAGCGCTTTGAGTTCG

DNA Methylation

Bio & Health Informatics Lab, SNU

DNA Methylation and Gene Silencing in Cancer Cells

Measure Information contents on genomic regions using Landmark space

Example of processing algorithm

Distance	es to Lar	ndmarks								
Cow	Cow	Cow	Rat	Rat	Rat					
Exon	CpGI	Intron	Exon	CpGI	Intron					
0.31	0.53	0.86	0.37	0.56	1.23					
Cow	Cow	Cow	Rat	Rat	Rat					
Exon	CpGI	Intron	Exon	CpGI	Intron					
1	3	5	2	4	6					
Information theoretic concordance test on rank Rank Template										
Cow	Cow	Cow	Rat	Rat	Rat					
Exon	CpGI	Intron	Exon	CpGI	Intron					
1	2	3	1	2	3					

Measure Information contents on genomic regions using Landmark space

Conclusion

- Using landmark and rank information of k-mers, we proposed new string kernel method for comparative and evolutionary sequence comparison.
 - Ranked k-mer spectrum string (RKSS) kernel
- From two landmark-based experiments,
 - We demonstrated effectiveness of RKSS kernel on phylogeny reconstruction problem.
 - In addition, we found the relationship across the information contents in exons, introns, and CpG islands.
 - In terms of evolutionary information, the order of three region was like that: exon > CpG island > intron.

Cancer subtype classification and modeling by pathway attention and propagation

Sangseon Lee, Sangsoo Lim, Taeheon Lee, and Sun Kim

Pathway: A prior knowledge for Bioinformatics Analysis

A graph-based representation of biological system

Sangseon Lee*, Youngjune Park¹, Sun Kim 4.htt+

Cancer subtype classification and modeling by pathway attention and propagation

- What to do:
 - To model mechanisms of cancer subtypes in terms of biological pathways,
- How to do this:
 - Graph convolutional network (GCN) modeling of each biological pathway
 - Integration of 287 GCNs using *attention mechanisms*.
 - To open up the black-box the GCN ensemble model, we used *graph propagation* technique to explain how pathway interact differently in cancer subtypes

Two major points of modeling cancer subtypes with pathways

Idea to address two challenges

Encoding Pathway Information

Graph Convolutional Network (GCN)

Pathway Aggregation with interactions

- Open "black-box" using attention
 - Merge pathways by MLP, i.e. Fully Connected Layers
 - It is hard to interpret. "BLACK-BOX"
 - Solution: Attention!!
- Consider pathway interactions by Network
 propagation
 HotNet2 algorithm

What & How to Achieve

Goal

- Modeling cancer subtypes with considering
 - comprehensive biological mechanism
 - Interaction between pathways

Input & Output

- Input
 - Gene expression profile with cancer subtype
 - Biological pathways
- Output
 - Classification of cancer subtypes
 - Importance of pathways with interaction information
 - ← Attention & Networkpropagation

Workflow

Biological Interpretation of Attention and Network propagation

Multi attention based ensemble (MAE)

Network propagation on patient-specific pathway network

Dataset

Cancer	Total	Subtypes	Source
		Basal_squamous (142), Luminal (26),	
BLCA	408	Luminal_infiltrated (78), Luminal_papillary (142),	*
		Neuronal	
BRCA	1007	Basal (230), Her2 (161), LumA (318),	
DRCA	1097	LumB (298), Normal-like (90)	oleda.
COAD	245	CMS1 (39), CMS2 (78), CMS3 (37),	*
	245	CMS4 (68), NOLBL (23)	
DRAD	317	ERG (152), ETV1 (28), ETV4 (14),	*
PRAD	517	SPOP (37), other (86)	
STAD	277	CIN (138), EBV (25), GS (54), MSI (60)	*

BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma,

COAD: Colorectal adenocarcinoma, PRAD: Prostate adenocarcinoma,

STAD: Stomach adenocarcinoma

* Sources of data set: BLCA (Robertson et al. (2017)), COAD (Guinney et al. (2015)),

PRAD (Abeshouse et al. (2015)), STAD (Network et al. (2014))

** The subtypes of breast cancer samples were classified using RNA-seq data and PAM50 as mentioned in the Section 2.4.

Performance comparison of Proposed model

	BLCA	BRCA	COAD	PRAD	STAD
GCN+MAE	93.74	85.52	87.01	89.62	91.49
(best)	(9-Att)	(14-Att)	(11-Att)	(9-Att)	(7-Att)
GCN+MAE (#class-Att)	93.48	85.22	86.25	88.52	90.8
GCN+ *Single Att	91.08	85.03	84.97	86.55	90.96
CCN bast	90.98	82.72	82.79	86.13	90.79
(I	nsa04151)	(hsa05206)	(hsa04151)	(hsa05200)	(hsa04151)
†SAS+SVM	81.51	74.41	77.54	79.25	76.08
SAS+RF	79.12	73.54	69.44	67.02	67.00
SAS+MLP	83.27	48.51	76.40	77.52	76.82
‡RAW+SVM	89.18	82.62	78.41	82.58	86.39
RAW+RF	79.83	77.11	74.69	68.36	76.17

* Instead of multi-attention, the GCN pathway models are combined with single attention mechanism

† The pathway activity inference tool from Lim et al. (2016)

‡ 20,531 genes are used as input features

hsa04151: PI3K-Akt singnaling pathway

hsa05206: MicroRNAs in cancer

hsa05200: Pathways in cancer

Heatmap of the attention weight of GCN+MAE model on BRCA data.

Pathway Network for BRCA subtypes by Network propagation

Conclusion

- Two major challenges in modeling cancer subtypes with pathways.
 - Pathway is represented as a form of graph that is **not suitable for further computational analysis.**
 - Pathway is a small component of biological processes that manipulate the behavior of cells.
- To address the challenges, we present an ensemble based pathway model with attention mechanism and network propagation technique.
 - extracting and encoding biological knowledge by Graph Convolutional Network
 - reconstructing biological processes in comprehensive scale by Multi-attention base ensemble
 - mining significant pathways with interaction information by Network propagation
- In experiments with five TCGA cancer data sets, our model demonstrated very good performance in cancer subtype classification.
- In addition to the subtype classification, our method showed subtype-specific pathway interaction networks as a result of using *attention mechanisms* and *pathway propagation*.

PRISM: Methylation <u>Pattern-Based</u>, <u>Reference-free Inference of Subclonal</u> <u>Makeup</u>

Dohoon Lee, Sangseon Lee, and Sun Kim

Bio & Health Informatics Lab.

PRISM: Methylation Pattern-based, Reference-free Inference of Subclonal Makeup

- What to do:
 - Decomposing (clustering) very high dimensional data, (> 50 millions dimensions)
- How to do this:
 - Curse of high dimensionality
 - Blessing of very high dimensionality (biology domain specific)
 - Maybe, works for more general settings of "decomposing event sequence on very high dimensions"
 - Discard dimensions that we cannot deal with.
 - Use the remaining dimensions only. (reminiscence of clusters on each dimension)
 - Since dimensions are very high, we have enough information to decompose data.

Intratumoral heterogeneity

Subclonal inference

PRISM uses subclonal methylation signatures for subclonal inference

Global DNA methylation reprogramming

Problem

• GOAL: Inferring subclonal structure of a tumor with DNA methylation patterns

INPUT: A collection of DNA methylation patterns of a tumor
 sequenced by RRBS

• OUTPUT: Inferred counts and size of constituent subclones

Viewing cell as vector of binary patterns 11111 / 11010 / 00000 / 00101 / 00111 / 00000 / ... (00000 / 00001 / 11111 / 01001 / 00111 / 00000 / ... 00000 / 11110 / 00000 / 01101 / 00111 / 11111 / ...

Viewing cell as vector of binary patterns

	11111	/	11010	/	00000	/	01101	/	00111	/	00000	/	•••
	11111	/	10011	/	00000	/	10001	/	00111	/	00000	/	•••
and the second	11111	/	11010	/	00000	/	00101	/	00111	/	00000	/	•••
	11111	/	00010	/	00000	/	01001	/	00111	/	00000	/	•••
	11111	/	11011	/	00000	/	10101	/	00111	/	00000	/	•••
	00000	/	00100	/	11111	/	00101	/	00111	/	00000	/	•••
	00000	/	01100	/	11111	/	01101	/	00111	/	00000	/	•••
	00000	/	00001	/	11111	/	01001	/	00111	/	00000	/	•••
/	00000	/	00110	/	00000	/	11111	/	00111	/	11111	/	•••
mm	00000	/	10011	/	00000	/	01001	/	00111	/	11111	/	•••
	00000	/	00010	/	00000	/	01101	/	00111	/	11111	/	•••
mym	00000	/	10011	/	00000	/	00111	/	00111	/	11111	/	•••
	00000	/	11110	/	00000	/	01101	/	00111	/	11111	/	•••
	00000	/	11011	/	00000	/	10101	/	00111	/	11111	/	•••
	00000	/	00010	/	00000	/	01101	/	00111	/	11111	/	•••

Fingerprint epilocus for red subclone

Non-fingerprint epilocus

Fingerprint epilocus for blue subclone

Fingerprint epilocus for green subclone

Sequencing = random sampling of patterns

	11111	/	11010	/	00000	/	01101	/	00111	/	00000	/	•••
(m) m	11111	/	10011	/	00000	/	10001	/	00111	/	00000	/	•••
man for	11111	/	11010	/	00000	/	00101	/	00111	/	00000	/	•••
	11111	/	00010	/	00000	/	01001	/	00111	/	00000	/	•••
	11111	/	11011	/	00000	/	10101	/	00111	/	00000	/	•••
	00000	/	00100	/	11111	/	00101	/	00111	/	00000	/	•••
	00000	/	01100	/	11111	/	01101	/	00111	/	00000	/	•••
	00000	/	00001	/	11111	/	01001	/	00111	/	00000	/	•••
/	00000	/	00110	/	00000	/	11111	/	00111	/	11111	/	•••
mm	00000	/	10011	/	00000	/	01001	/	00111	/	11111	/	•••
marty m	00000	/	00010	/	00000	/	01101	/	00111	/	11111	/	•••
my my	00000	/	10011	/	00000	/	00111	/	00111	/	11111	/	•••
	00000	/	11110	/	00000	/	01101	/	00111	/	11111	/	•••
	00000	/	11011	/	00000	/	10101	/	00111	/	11111	/	•••
	00000	/	00010	/	00000	/	01101	/	00111	/	11111	/	•••

F NF F NF NF F

Sequencing = random sampling of patterns

	11111	/	11010	/	00000	/	01101	/	00111	/	00000	/	•••
		/	10011	/	00000	/	10001	/		/	00000	/	•••
man		/		/	00000	/	00101	/		/		/	•••
	11111	/		/	00000	/	01001	/		/		/	•••
	11111	/	11011	/	00000	/	10101	/	00111	/	00000	/	•••
~~~~	00000	/		/	11111	/		/		/	00000	/	•••
		/	01100	/		/		/		/	00000	/	•••
		/	00001	/	11111	/	01001	/		/		/	•••
/	00000	/		/	00000	/	11111	/	00111	/	11111	/	•••
	00000	/		/		/		/		/		/	•••
my ly m	00000	/	00010	/		/		/		/		/	•••
my my	00000	/	10011	/	00000	/		/	00111	/		/	•••
		/		/		/		/	00111	/	11111	/	•••
		/	11011	/	00000	/	10101	/	00111	/	11111	/	•••
		/	00010	/		/	01101	/	00111	/	11111	/	•••

#### F NF F NF NF F

## PRISM ignores non-fingerprint epiloci



F NF F NF NF F

Fraction of fingerprint reflects subclonal prevalence





#### Clusters are identified by solving mixture model



## Simulated cell line mixtures



## Analyzing AML diagnosis-relapse pair



## Conclusion

- PRISM focuses on **fingerprint epiloci** whose ratio represents the prevalence of the corresponding subclone.
- DNMT1-like HMM-based *in silico* proofreading calibrates the subclone size estimates.
- Whether the the genomic and epigenomic evolution occur coordinately or independently is still obscure, and even seem to be case-dependent.
- PRISM offers the mean to obtain high-resolution "epigenomic" evolutionary history.
- Along with the result of "genomic" subclonal inference, multi-omics intratumor heterogeneity can be assessed.

## 2019 DAY1



Thank you!