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Outline of this talk

Why does deep learning perform so well?

“Adaptivity” of deep neural network:
o Adaptivity to the shape of the target function.
e Adaptivity to the dimensionality of the input data.
— sparsity, non-convexity
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Outline of this talk

Why does deep learning perform so well?

“Adaptivity” of deep neural network:
o Adaptivity to the shape of the target function.
e Adaptivity to the dimensionality of the input data.
— sparsity, non-convexity

Approach:

e Estimation error analysis on a Besov space.

e spatial inhomogeneity of smoothness
e avoiding curse of dimensionality

e Will be shown that any linear estimators such as
kernel methods are outperformed by DL.
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Reference

Taiji Suzuki:

Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov
spaces: optimal rate and curse of dimensionality.

ICLR2019, to appear. (arXiv:1810.08033).
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@ Literature overview
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Universal approximator

Two layer neural network:

m

F(x) =Y vin(wx + by).

j=1
F(x) = ZLH(W,-TX +b) o~

PZAANN
@gIOIg’;OJ

As m — oo, the two layer
network can approximate an
arbitrary function with an
arbitrary precision.
fo(x) = [ h°(w, b)n(w " x + b)dwdb
O

L
0000

(Sonoda & Murata, 2015)

Year Basis function space
1987 Hecht-Nielsen - C(RY)
1988 Gallant & White Cos La(K)
Irie & Miyake integrable Lo(R9)

1989  Carroll & Dickinson  Continuous sigmoidal  L>(K)
Cybenko Continuous sigmoidal C(K)

Funahashi Monotone & bounded  C(K)

1993  Mhaskar & Micchelli Polynomial growth C(K)
2015 Sonoda & Murata admissible Li, Ly
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Universal approximator

Two layer neural network: As m — 0o, the two layer

m network can approximate an
T . . .
f(x) = § vin(w;" x + by). arb!trary func.tl.on with an
= arbitrary precision.

f(x) = PRy Vj?](WjTX +b) ~ fo(x)=[h°(w,b)n(w’x+ b)dwdb
@, O

0000

(Sonoda & Murata, 2015)

Activation functions:

ReLU: n(u) = max{u,0} Sigmoid: 7(u) = m

e 4 2 8 3 4«

6/50



Expressive power of deep neural network

o Combinatorics/Hyperplane Arrangements (Montufar et al., 2014)
Number of linear regions (ReLU)

@ Polynomial expansions, tensor analysis (Cohen et al., 2016; Cohen &
Shashua, 2016)
Number of monomials (Sum product)

o Algebraic topology (Bianchini & Scarselli, 2014)
Betti numbers (Pfaffian)

@ Riemannian geometry + Dynamic mean field theory (Poole et al., 2016)
Extrinsic curvature

Deep neural network has exponentially large power of
expression against the number of layers.
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Depth separation between 2 and 3 layers

2 layer NN is already universal approximator. When is deeper network useful?

@
OO0 9

6000 (00000000

There is a function represented by

Fo(x) = g(lIxII*) = g(x + -+ x3)

that can be better approximated by 3 layer NN

than 2 layer NN (c.f., Eldan and Shamir (2016))
dy: the dimension of the input x

o 3 layers: O(poly(dy, 1)) internal nodes are sufficient.

o 2 layers: At least Q(1/¢%) internal nodes are required.
— DL can avoid curse of dimensionality.
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Non-smooth function

For estimating a non-smooth function, deep is better (Imaizumi & Fukumizu,
2018):

K
Fo(x) = D 1R (x)he(x)
k=1

where Ry is a region with smooth boundary and hy is a smooth function.

~-#- DNN ¥+ Kernel(poly)
-4+ Kernel(gauss) ‘@ Series
N L —
T 25
o
2
o -30 "
g s EE g g gogag
w
o 404 |=
8 +
-45 +++
bt tates
-5.0
250 500 750 1000 1250 1500
n
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Depth separation

What makes difference between deep and shallow methods?
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Depth separation

What makes difference between deep and shallow methods?
— Non-convexity of the model (sparseness)
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Easy example: Linear activation

Reduced rank regression:
Yi=UVXi+& (i=1,...,n)
where U € RM*r v e RN (r < M, N), and Y; € RM X; € RV,
e Linear estimator f(x) =Y. Yio(X1, ..., Xp, x),
o Deep learning f(x) = UVx.

r(M+ N) < MN

n n

Deep Shallow

U
Y; X

7
Non-convexity is essential. — sparsity.
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Nonlinear regression problem

Nonlinear regression problem:

yi=f(x)+& (i=1,...,n),

where & ~ N(0,02), and x; ~ Px([0,1]9) (i.i.d.).

We want to estimate f° from data (x;, yi)7_;.

Least squares estimator:

. 1<
f = argmin — i — f(x7))?
gnin >0~ )

where F is a neural network model.
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Bias and variance trade-off

Estimator

Hfo—fHLz(P ||f°—f|\L2(P +||f—f||L2

Estlmatlon error ApprOX|mat|on error  Sample dewatlon
(bias) (variance)

@ Large model: small approximation error, large sample deviation
@ Small model: large approximation error, small sample deviation

— Bias and variance trade-off
13/50



© Approximating and estimating functions in Besov space and related spaces
@ Deep NN representation for Besov space
@ Function class with more explicit sparsity
@ Deep NN representation for “mixed smooth” Besov space
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Agenda of this talk

Deep learning can make use of sparsity.

Appropriate function class with non-convexity:
@ Q: A typical setting is Holder space. Can we generalize it?

o A: Besov space and mixed-smooth Besov space (tensor product space)

Curse of dimensionality:

@ Q: Deep learning can suffer from curse of dimensionality.
Can we ease the effect of dimensionality under a suitable condition?

@ A: Yes, if the true function is included in mixed-smooth Besov space.
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@ Literature overview

© Approximating and estimating functions in Besov space and related spaces
@ Deep NN representation for Besov space

16 /50



Minimax optimal framework

What is a “good” estimator?

@ Minimax optimal rate:

inf  sup E[|f — L) <n

fiestimator fo eF

— If an estimator  achieves the minimax optimal rate, then it can be seen a
“good" estimator.

What kind F do we think?
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Holder, Sobolev, Besov

=[0,1]¢ c R¥
e Hélder space (C*(Q))

07F(x) =

9*f(y)|

[fllcs = max |0°F[loc + max sup

lal=mxeq  |x—y|#=m

e Sobolev space (Wx(Q))

1
71w = (3 10°7 e )

la| <k

f

e Besov space (B; ,(22)) (0 < p,g < 00,0 <s<m)

wm(f,t)p = sup
A<t

g;(l)’"f (7)rc+m

1Fllss. @ = IF ooy ( [ttt 0,175

dt

)

Lr(Q)

)1/q




Relation between the spaces

Suppose Q = [0,1]? C R.
@ For me N,

BFTI — W;"<—> B”

p,007
m m
B, = W,

@ For 0 < s <ooands¢N,
C° =B _.

¢ )

( Holder space ] Besov space
Cs =B S
- B,

Sobolev space

m m m
B‘,JH Wp HBPDC.
m o gm
By, = W,

N )
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e Continuous regime: s > d/p
0
B, C
o [’-integrability: s > d(1/p—1/r)+
B;q — L"
(If d/p > s, the elements are not necessarily continuous).

Cs_d/P Lr
Continuous  Dis-continuous
S b :
o0 d/p d(1/p—1/r)+ 0

e Example: Bf 1([0,1]) C {bounded total variation} C B . ([0,1])
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Properties of Besov space

e Discontinuity: d/p > s

o Spatial inhomogeneity of smoothness: small p

rough smooth

Question: Can deep learning capture these properties?
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Connection to sparsity

Multiresolution expansion

f—z Zamw2x—1)

keN+ jeJ(k

sz, = Z{fk (27 Z ek j[°) P}

JjeJ(k

1/q

Sparse coefficients — spatial inhomogeneity of smoothness
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Deep learning model

—

@

MMM
U
ORI

X W1

f(x) = (W) + bDY o (WEDn) 4+ bED) oo (WD x 4 pD)

o F(L,W,S,B) : deep networks with
depth L, width W, sparsity S, norm bound B.

e 7 is ReLU activation: n(u) = max{u,0}.

(currently most popular)

n(z) = max{z,0}
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Approximation by deep NN in Besov space

F(L,W,S, B) : deep networks with depth L, width W, sparsity S, norm bound B.

Proposition (Approximation ability for Besov space)

Suppose that 0 < p,q,r < oo and 0 < s < oo satisfy m > 2s and
s>d(1/p—1/r)+

For N € N, by setting

L = 3log, (32782 ) + 51logy(d v m)], W = 6N(d v m?),
S=6(L— )(d\/m )+ N, B = O(N(@/P=9)+),
it holds that

sup _inf | — f|
foeU(Bs 4([0,1]9)) feF(L,W,S,B)

o) S N/

Remark: Shallow network cannot achieve this rate.
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Approximation by deep NN in Besov space

F(L,W,S, B) : deep networks with depth L, width W, sparsity S, norm bound B.

Proposition (Approximation ability for Besov space)

Suppose that 0 < p,q,r < oo and 0 < s < oo satisfy m > 2s and

s> d(1/p—1/r);

For N € N, by setting

L = O(log(N)), W = O(N),
S = O(Nlog(N)), B = O(N/P=2)+),

it holds that
sup inf ||fo — i_/| L7([0,1]9) 5 Nis/d.

FoeU(Bs 4([0,1]9)) FEF(LW.S,B)

Remark: Shallow network cannot achieve this rate.
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_J1 (xeo,1)]),
N = {O (otherwise).
Cardinal B-spline of order m:

Nim(x) = (V5N % - - x N)(x).

m+ 1 times

— Piece-wise polynomial of order m.

l“ No N
0 i : : e
d
d .
N[ij)(xlv 7Xd) = HNm(szi _./I)
i=1
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Cardinal B-spline interpolation (Devore & Popov, 1988)

@ Atomic decomposition
f € LPisin B; . if and only if f can be decomposed into

f_z ZO""J kJ’

keEN+ jeJ(k)

(where J(k) = {j € Z¢ | —m < j; < 25+ + m}) such that

1/q
(o]
N(F) = | D> {2527 Y JawylP) /P < 0.
k=0 JEJ(K)

(cuj is determined in a certain way.)
@ Norm equivalence
Iflls;,, ~ N(f).

Basic strategy: approximate each basis N,Ej.) by deep NN “efficiently”.
X cardinal B-spline is not a wavelet basis.

26 /50



Cardinal B-spline expansion (m = 1)
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Under the condition s > d(1/p —1/r), it holds that

< N—s/d.

sup inf | ||f0 — )2-/ L7([0,1]9)

foeU(Bs ,([0,1]9)) feF(L,W,S,B

@ Setting p = g = oo and r = oo, then B; ,(2) = C*(2)
= The result by Yarotsky (2016) is recovered as a special case.
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Under the condition s > d(1/p —1/r), it holds that

< N—s/d.

sup inf | ||f0 — )2-/ L7([0,1]9)

foeU(Bs ,([0,1]9)) feF(L,W,S,B

@ Setting p = g = oo and r = oo, then B; ,(2) = C*(2)
= The result by Yarotsky (2016) is recovered as a special case.

@ Nonlinear adaptive sampling recovery is required (Diing, 2011b).
“Non-adaptive method” only achieves

N—(s/d=(1/p=1/r)+)

forl<p<r<2 s>d(1/p—1/r); which is not optimal if p < r.
(Non-adaptive method: it uses N “fixed” bases to approximate the target

function by Z,N:l aii(x))
— Methods with fixed bases cannot achieve the opt. rate!

AN

rough smooth

(small p situation)
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Empirical risk minimization and estimation error

Estimator

We have already obtained the approximation error.
Next, we derive the estimation error of the least squares estimator:

n
f= argmin yi — f(xi))>.
feF(L,W,S,B) Z:;( ()
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Bias and variance decomposition

~

A standard covering number argument gives

E[|f* — Fl22(py)]

x)

< S[Llog(BW) + log(Ln)] N - If — fO”%Z(PX)
n fEF(L,W,S,B)
Variance

Bias
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Bias and variance decomposition

\
A standard covering number argument gives
E[If° = fllf(py)]
S[Llog(BW) + log(L .
< SlloaBW) +logllll ok f - Pl
€F(L,W,S,B)
Variance Bias
N /

If o€ B; ,(), we know that
Bias = N~°/¢ (approximation error)

for L = O(log(N)), W = O(N), S = O(Nlog(N)), B = O(N(/P=9)+),
= Balance the bias and variance terms.
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Estimation error analysis

yi = fO(X,')—Ff,' (i: ].,...,I’l)7
where x; ~ P(X) with density p € L"/(=2)([0,1]¢) for r < (1/p — s/d);".

F(L,W,S,B): ReLU-NN with width W, depth L ans sparsity S with parameters
are bounded by B.

f= argmin yi — f(x;))?
fe]-'(L,W,S,B),Z:;( (i)

(F is the clipping of f: f = min{max{f, —R}, R}; realizable by ReLU)

Proposition

For f° s.t. HfOHB; (0,19 < 1 and 1°]|oc < R, and 0 < p, q < oo with
8 d(,‘l, — 1), by letting N =< n=a,

2 _ 2
E[[[f° = fllf2pyy] < 0%+ log(n)®.

Setting p = g = oo, the result of Schmidt-Hieber (2017) is recovered as a special

case.
31/50



Estimation error analysis

yi = fO(Xi)+§; (I = 1,...,[’7),
where x; ~ P(X) with density p € L"/(=2)([0,1]¢) for r < (1/p — s/d);".

F(L,W,S,B): ReLU-NN with width W, depth L ans sparsity S with parameters
are bounded by B.

n

f= argmin Z(yi — f(x))

feF(LW,S,B) 5

(f is the clipping of f: f = min{max{f, —R}, R}; realizable by ReLU)

Proposition

For fo s.t. ||f°llgs (o) < 1 and [[f°lloc < R, and 0 < p,q < oo with
g d(,l, — 1)1, by letting N =< n=a,

o 2 _ 2
E[[If° = fllf2py)] < n™%5 log(n)®.

Minimax optimal rate.
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Best linear estimator vs. deep learning

o Linear estimator (Donoho & Johnstone, 1998; Zhang et al., 2002)
f(x) =30 yip(xa, oy Xy X)
Kernel ridge estimator, Sieve method, Nadaraya-Watson estimator, ...
(e.g., F(x) = Kex(Kx,x + AI)71Y). For s > 1/p,

2s—2(1/p—1/2)4
n_ 2s+1—-2(1/p—1/2) 1

\%
e Deep learning (our bound)

_ 25
n 2s+1

fors>(1/p—1/2),.
(sparse estimator achieves this rate for s > max{1/p,1/2} (Donoho & Johnstone,
1998))

There appears difference when p < 2.

p < 2 corresponds to spatial incoherence of smoothness.

AN

rough smooth
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Why does this difference happen?

Deep net

ol

Convex huII
(Shallow net)

inf  sup E[||f—f°||L(P)]_ mf sup  E[[If = I3,
f:Linear foe F Linear foeconv(F)

(More strictly, it can be extended to “Q-hull.")
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@ Literature overview

© Approximating and estimating functions in Besov space and related spaces

@ Function class with more explicit sparsity
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Functions with jumps

i=1 i=1
— Its convex hull includes the functions of bounded variation.

K K
Jx = {ao +Zl[thl] | t; € (0,1], \ao\,2|a,-| < 1}

L

>
‘ i

Theorem

~ 1
inf  sup E |||f — f°|? >Q(— ).
f:ll.inear fOEFJ)K [” ||L2(P)] N (ﬁ)

But, for a deep learning estimator f, we obtain

2 1
sup E |||f — 3 go(—|o n3).
sup B[IF = £l < 0 ; log(n)

35/50



Function class with sparse parameter

@ Weak ¢P-norm of the coefficient:

le[[wee = sup /Pl
1€2Ly

where |a/(j) is the i-th largest absolute value.
@ Function class with sparse coefficient:

> kit ‘ latllwer < C, > o] < C27°m

(k,0) k>m

where 1y ¢(x) = 2K/24)(25x — £). 1) could be Haar wavelet.
@ Finite combination of JP:

Ky —{Zcu i —b) | lail. | det A~ ||A|oo,||b|oosweﬂ}
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Convergence rate of deep NN

Minimax rate Deep learning

Ji Q(n~1) ] O(n~1log(n)?)
KP Q(n_%(log(n))_%) () (n_ﬁil Iog(n)3>

where 0 < p <2, a=1/p—1/2.

@ For 0 < p < 1 (sparse situation), DL is better than the linear estimator:

n~*log(n)?, a4t log(n)? < n~1/2

Deep Shallow (Linear)

37/50



@ Literature overview

© Approximating and estimating functions in Besov space and related spaces

@ Deep NN representation for “mixed smooth” Besov space
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Difficulty

__2s
n 2s+d

d influences the exponent of the convergence rate.
— Curse of dimensionality
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Relation to existing work

Besov space with dominating mixed smoothness (tensor product space)

MB; , = B, @---® By,

The estimation accuracy ||f — FolIZ,p)-

Slpes Holder (V) Barron class | m-Sobolev m-Besov
(8<2) (vV5)
Approximation
Yarotsky (2016), | Barron (1993) | Montanelliand | This work
Liang and Sri- Du (2017)
kant (2016)
Approx. . 5 . . -
rate O(m~7) O(m=1/2) O(m=A) O(m=F)
Estimation
Schmidt-Hieber Barron (1993) — This work
(2017)
Estimation. | 28 ~ 1 ~ ___ 28
rate O(n™ 2+d) O(n~2) — O(n™ #P7170g@))
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Tensor product space

Tensor product of Besov space (dominating mixed smoothness)
MBg,p = Bg,p(R) Qp - Qp BﬁP(R)
f(x1,...,xq) € span{fi(x1) x - X fy(xq)}

(limrso0 X270 £ () 00) - £ (x0))

Can be extended to p # g /\/IBﬁq (see, for example, Sickel and Ullrich (2009);
Diing (2011a)).
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Tensor product space

Tensor product of Besov space (dominating mixed smoothness)
MBg,p = Bg,p(R) Qp - Qp ng(R)
f(x1,...,xq) € span{fi(x1) x - X fy(xq)}

(limgree S8 FP0a) P () - £ (x))

Can be extended to p # ¢ /\/Ing (see, for example, Sickel and Ullrich (2009);
Diing (2011a)).

When p > 1, let the norm of the space ng ®p G for a Banach space G be

R 1/p R R 1/p
. 1 2
1Fllgp g, := inf <z;|f,”|';§p> sup Zl)\rg,() ](Z;M,V’) <1
r= r= g r=

for f = Zle f,(l)(xl)gr(z)(xQ) where fr(l) € ng and gr(z) €q.
e BP? ®,§ is obtained by completion of the finite sum w.r.t. this norm.
° MB;?,p = Bg,p ®p (- Bg,p Dp (Bg,p Op ng))
@ For p <1 and p = oo, a different norm is induced.
(see Light and Cheney (1985))
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Tensor product space

Tensor product of Besov space (dominating mixed smoothness)
MBg,p = Bg,p(R) Qp - Qp Bﬁ,p(R)
f(x1,...,xq) € span{fi(x1) x - -+ x fy(xq)}

(limp oo 35754 A2 00)F00) - £ (x0)

Can be extended to p # ¢ /\/Ing (see, for example, Sickel and Ullrich (2009);
Diing (2011a)).

e Tensor product of Besov (MB? ,(R?)):

o of r B or pr or o
Ox1” Ox2” Ox27 Ox37 0x10x2” 0x10x27 Ox20x” Ox2OX3

(e.g., Korobov space)
e Sobolev (WZ(R?)):
of of 0°f 0°fF O°f
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f(g1(x1), 82(x2), - - -, 8d(xa))
gk € B; ,(R), f: sufficiently smooth.

o Additive model: d
= falxa)
r=1

@ Tensor model:

f(x) = Z H fr k(xk)

r=1 k=1

42/50



Approximation by NN

Suppose that 0 < p,q,r < oo and 3 > (1/p —1/r),. Forall f € MBP ([0,1]¢)
s.it. |||l yge (o.y¢) < 1 and N > 1, there exists ReLU-NN f with
p,q (1Y,

o Width W = O(NCy.q)
@ Depth L = O(log(N))
@ Sparsity S = O(W x L x log(N))
and the parameters are bounded by ||W)| ., |69 < O(N/P=B)+Y such that

BC 1/ min(r,1)—1/q)+ (p > I’),

Lr([olld)< N~ ﬂCl/’ 1/q)+ (p<r,r<oo),
BC(l 1/q)+

|fo —F

(r=o0),

where Cq n := (1 + |0g )Iog (1 + Iog(N))d 1(< d"&N) A log(N)9—1).

e Ordinal Besov space BS ([0,1]%): N=#/9,
@ Proof idea: Sparse grid technique (Diing, 2011a; Smolyak, 1963) combined

with adaptive nonlinear interpolation. 43/%



Estimation error bound

yi = fO(X,')—Ff,' (i: ].,...,I’l)7
where x; ~ P(X) with density p(x) < G on [0,1]9.

F(L,W,S,B): ReLU-NN with width W, depth L ans sparsity S with parameters
are bounded by B.

f = argmin Z(Yi — f(x;))?

FEF(LW.S,B) =
(f is the clipping of f: f = min{max{f, —R}, R}; realizable by ReLU)
Theorem

Suppose that 0 < p,q < oo and 3 > (1/p —1/2).. For all f° € MB? ([0,1]9)
st [Fllyge oy < 1o by letting u= (1= 1)1 (p>2), (3 2)+ (P<2),

ni% |og(n)%(dil)|0g(n)3 (every time),

FO — FlPoym <
|| ||L2(P) = {n—zﬁﬂzﬁg(e”og(ny (u _ 0).

Besov space BJ,([0.11%): O(n~ 7).
— effect of dimensionality is eased. 44 /50



Sparse grid

=1 =2 =3
|
|
h=1 !
|
|
|
lp=2 !
jm— == — 1
|
|
lo=3 !
|
|

(figure is borrowed from (Montanelli & Du, 2017))

Number of points in sparse grid: N = 2MM9-1,
Dense grid: N = 2Md,
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NN-structure

)30 (p)3or

(

T
dlog(N)

| (21,29...2q) | |
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Applications

o Additive model:

@ Tensor product form:

R d
f(Xl7 e ,Xd) = Z H fr,k(Xk)'

o Dimensionality reduction:
fC=goF

where F : R — RP such that D < d and F; € MBS

Dy.
g and g € B;q(R ):

~ _ 2s 2y
O(n 25+1+Hogp(e) - n*m)'

(F is a nonlinear dimensionality reduction into a low dimensional space (e.g.,
low dimensional manifold embedding).)
(see also Bolcskei et al. (2017))
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2

Input x is sparse (its number of non-zero elements is small).

Ixlo < k = n =

48/50



Low dimensional manifold

f(x) only depends on D-dimensional quotient-manifold:

__2y
n 2v+D
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Conclusion

Adaptivity of deep learning

@ It was shown that the ReLU-DNN has a high adaptivity to the shape of the
target functions (discontinuity and spatial inhomogeneous smoothness).

IF = £213, ) = O(n™2/25+))

o DNN outperforms a non-adaptive method.

2As—d(1/p—1/2))
(DNN) p2s/(2s+d) <n 2s+d—2d(1p/P*1/2) (Iinear method)

@ The ReLU-DNN can ease the curse of dimensionality to estimate the
mixed-smooth Besov spaces.

(Besov) O(n=2/Cst9)) 5 (m-Besov) O(n~25/Cs+1) jog(n) 125 (9-1)

Better than fixed basis methods: high adaptivity to sparsity.

50/50



Arora, S., Ge, R., Neyshabur, B., & Zhang, Y. (2018). Stronger generalization
bounds for deep nets via a compression approach. Proceedings of the 35th
International Conference on Machine Learning (pp. 254-263). PMLR.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a
sigmoidal function. |IEEE Transactions on Information theory, 39, 930-945.

Bianchini, M., & Scarselli, F. (2014). On the complexity of neural network
classifiers: A comparison between shallow and deep architectures. |IEEE
transactions on neural networks and learning systems, 25, 1553-1565.

Bolcskei, H., Grohs, P., Kutyniok, G., & Petersen, P. (2017). Optimal
approximation with sparsely connected deep neural networks. arXiv preprint
arXiv:1705.01714.

Cohen, N., Sharir, O., & Shashua, A. (2016). On the expressive power of deep
learning: A tensor analysis. The 29th Annual Conference on Learning Theory
(pp. 698-728).

Cohen, N., & Shashua, A. (2016). Convolutional rectifier networks as generalized
tensor decompositions. Proceedings of the 33th International Conference on
Machine Learning (pp. 955-963).

DeVore, R. A., & Popov, V. A. (1988). Interpolation of besov spaces.
Transactions of the American Mathematical Society, 305, 397-414.

Donoho, D. L., & Johnstone, I. M. (1998). Minimax estimation via wavelet
shrinkage. The Annals of Statistics, 26, 879-921.

50/50



Diing, D. (2011a). B-spline quasi-interpolant representations and sampling
recovery of functions with mixed smoothness. Journal of Complexity, 27,
541-567.

Diing, D. (2011b). Optimal adaptive sampling recovery. Advances in
Computational Mathematics, 34, 1-41.

Eldan, R., & Shamir, O. (2016). The power of depth for feedforward neural
networks. Proceedings of The 29th Annual Conference on Learning Theory (pp.
907-940).

Imaizumi, M., & Fukumizu, K. (2018). Deep neural networks learn non-smooth
functions effectively. arXiv preprint arXiv:1802.04474.

Liang, S., & Srikant, R. (2016). Why deep neural networks for function
approximation? arXiv preprint arXiv:1610.04161. ICLR2017.

Light, W., & Cheney, E. (1985). Approximation theory in tensor product spaces.
Lecture notes in mathematics. Springer-Verlag.

Montanelli, H., & Du, Q. (2017). Deep relu networks lessen the curse of
dimensionality. arXiv preprint arXiv:1712.08688.

Montufar, G. F., Pascanu, R., Cho, K., & Bengio, Y. (2014). On the number of
linear regions of deep neural networks. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence and K. Weinberger (Eds.), Advances in neural
information processing systems 27, 2924-2932. Curran Associates, Inc.

50/50



Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., & Ganguli, S. (2016).
Exponential expressivity in deep neural networks through transient chaos. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon and R. Garnett (Eds.),
Advances in neural information processing systems 29, 3360-3368. Curran
Associates, Inc.

Schmidt-Hieber, J. (2017). Nonparametric regression using deep neural networks
with ReLU activation function. ArXiv e-prints.

Sickel, W., & Ullrich, T. (2009). Tensor products of Sobolev—Besov spaces and
applications to approximation from the hyperbolic cross. Journal of
Approximation Theory, 161, 748-786.

Smolyak, S. (1963). Quadrature and interpolation formulas for tensor products of
certain classes of functions. Soviet Math. Dokl. (pp. 240-243).

Sonoda, S., & Murata, N. (2015). Neural network with unbounded activation
functions is universal approximator. Applied and Computational Harmonic
Analysis.

Suzuki, T., Abe, H., Murata, T., Horiuchi, S., Ito, K., Wachi, T., Hirai, S.,
Yukishima, M., & Nishimura, T. (2018). Spectral-Pruning: Compressing deep
neural network via spectral analysis. arXiv e-prints, arXiv:1808.08558.

Yarotsky, D. (2016). Error bounds for approximations with deep relu networks.
CoRR, abs/1610.01145.

50/50



Zhang, S., Wong, M.-Y., & Zheng, Z. (2002). Wavelet threshold estimation of a
regression function with random design. Journal of multivariate analysis, 80,
256—-284.

50/50



	Literature overview
	Approximating and estimating functions in Besov space and related spaces
	Deep NN representation for Besov space
	Function class with more explicit sparsity
	Deep NN representation for ``mixed smooth'' Besov space

	References

