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Our Problem Domain

 Discrete random variables

V2

V5

V3

V4

V1
Brand equity

Price Product features

Brand value

Other factors
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Joint Probability Distribution

 P(V1, V2, V3, V4, V5) can be represented as 
a table.

V1, V2, V3, V4, V5 P(V1, V2, V3, V4, V5)

Value 1 Probability 1

Value 2 Probability 2

… …
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Probabilistic Inference

 P(Brand value| Brand equity, Price)?
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 Any conditional probabilities can be 
calculated in principle.
 Exponential time complexity

Marginalization
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It is too expensive to store all joint 
probabilities.

 Probability table size is exponential to the 
number of variables.
 If all variables are binary, the table size 

amounts to (2n – 1) where n is the number of 
variables.

 Space and time complexity for storing 
probabilities and marginalization is formidable 
in practice.

 Probabilistic independence can facilitate 
the use of joint probability distribution.
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In the Extreme Case

 Let us assume that all variables are independent 
from one another.

 Table size comparison in binary case
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# of 
variables 1 2 3 4 5 6

n 1 2 3 4 5 6
2n – 1 1 3 7 15 31 63

by chain rule
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Between the Two Extremes

 Too complicated
 All variables are dependent on each other.

 Too simple
 All variables are independent from each other.

 A reasonable compromise
 Some variables are dependent on other 

variables.
 Conditional independence
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Conditional Independence

 Probabilistic independence
 X and Y are independent from each other.
 P(X, Y) = P(X)∙P(Y)

 Conditional (probabilistic) independence
 X and Y are conditionally independent from 

each other given the value of Z.
 P(X, Y|Z) = P(X|Z)∙P(Y|Z)

 How to describe dependencies among 
variables efficiently?
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The Bayesian Network
 Compact representation of joint 

probability distribution
 Qualitative part: graph theory

 Directed acyclic graph (DAG)
 Vertices (nodes): variables 
 Edges: dependency or influence of a 

variable on another. 

 Quantitative part: probability theory
 Set of (conditional) probabilities for all 

variables

 Naturally handles the problem of 
complexity and uncertainty.
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Directed Acyclic Graph Structures

V1

V2 V3

V4 V5 V6

V7 V8

V9

A parent of V5

A child of V5

A spouse/sibling of V5

Grandparent of V5

Grandchild of V5

A partial topological order 
over the nodes could be 

specified:

V1, [V2, V3], [V4, V5, V6], 
[V7, V8], V9.

A partial topological order 
over the nodes could be 

specified:

V1, [V3, V2], [V6, V5, V4], 
[V8, V7], V9.
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Probabilistic Graphical Models

Graphical models

directed graphundirected graph

C

E

D

B
A

C

E

D

B
A

Bayesian NetworksMarkov Random Fields
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DAG for Encoding
Conditional Independencies

Connections in DAGs

CA B
C

A B C

A B

serial diverging converging

d-separation:
♦Two nodes (variables) in a DAG are d-separated if for all 

paths between them, there is an intermediate node C
such that,
 the connection is “serial” or “diverging” and the state of C is 

known or
 the connection is “converging” and neither C nor any of C’s 

descendants have received evidence.
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d-Separation and
Conditional Independence

 Two random variables are conditionally 
independent from each other if the 
corresponding vertices in the DAG are d-
separated. 
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d-Separation Example 1

CA B
C

A B

A and B is marginally dependent.

CA B
C

A B

A and B is conditionally independent.

C

A B

A and B is marginally independent.

C

A B

A and B is conditionally dependent.
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d-Separation Example 2

There exists a non-blocked path. Hence, two black nodes 
(variables) are not d-separated and dependent on each other.
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d-Separation Example 2

Every path is blocked now. Hence, the two black nodes 
(variables) are d-separated and independent from each other.
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Definition: Bayesian Networks

 The Bayesian network consists of the 
following.

 A set of n variables X = {X1, X2, …, Xn} and a set of 
directed edges between the variables (vertices).

 The variables with the directed edges form a 
directed acyclic graph (DAG) structure.
 Directed cycles are not modeled.

 To each variable Xi and its parents Pa(Xi), there is 
attached a conditional probability table for 
P(Xi|Pa(Xi)).
 Modeling for continuous variables is also possible.
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Ch(X5)

Ch(X5): the children of X5

Pa(X5)

Pa(X5): the parents of X5
X={X1, X2, … , X10}

∏==
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De(X5)

De(X5): the descendents of X5X1

X3

X5 X6

X7 X8

X2

X9 X10

X5

Topological sort of X∈iX
X1, X2, X3, X4, X5, X6, X7, X8, X9, X10

Chain rule in a reverse order
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Bayesian Networks Represent
Joint Probability Distribution

 By the d-separation property, the Bayesian 
network over n variables X = {X1, X2, …, 
Xn} represents P(X) as follows:
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Causal Networks
 Node: event
 Arc: causal relationship between the two nodes

 A B: A causes B.
 Causal network for the car start problem (Jensen and 

Nielson, 2007)

Fuel

Fuel Meter
Standing Start

Clean Spark
Plugs
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d-separation: Car Start Problem
1. ‘Start’ and ‘Fuel’ are dependent on each other.

2. ‘Start’ and ‘Clean Spark Plugs’ are dependent on each other.

3. ‘Fuel’ and ‘Fuel Meter Standing’ are dependent on each other.

4. ‘Fuel’ and ‘Clean Spark Plugs’ are conditionally dependent on 
each other given the value of ‘Start’.

5. ‘Fuel Meter Standing’ and ‘Start’ are conditionally independent 
given the value of ‘Fuel’.

Fuel

Fuel Meter
Standing Start

Clean Spark
Plugs
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Reasoning with Causal Networks
• My car does not start.  Increases the certainty of no 

fuel and dirty spark plugs. Increases the certainty of 
fuel meter’s standing for the empty.

• Fuel meter stands for the half.  Decreases the 
certainty of no fuel Increases the certainty of dirty 
spark plugs.

Fuel

Fuel Meter
Standing Start

Clean Spark
Plugs
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Bayesian Network
for the Car Start Problem [Jensen and Nielson, 2007]

Fuel

Fuel Meter
Standing Start

Clean Spark
Plugs

P(Fu = Yes) = 0.98 P(CSP = Yes) = 0.96

P(St|Fu, CSP)
P(FMS|Fu)

0.001
0.60

FMS = 
Half

0.9980.001Fu = No
0.010.39Fu = Yes

FMS = 
Empty

FMS = 
Full

10(No, Yes)
0.990.01(Yes, No)

10(No, No)

0.010.99(Yes, Yes)
Start=NoStart=YES(Fu, CSP)
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Inference in Bayesian Networks

 Infer the probability of an event given some 
observations.

Fuel

Fuel Meter
Standing Start

Clean Spark
Plugs

Start

How probable is that the spark plugs are dirty?
In other words, what’s the probability P(CSP = No| St = No)?
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Inference Example

X1 X2 X3 P(X1) = (0.6, 0.4)

P(X2|X1) =

X1 == 0: (0.2, 0.8)

X1 == 1: (0.5, 0.5)

P(X3|X2) =

X2 == 0: (0.3, 0.7)

X2 == 1: (0.7, 0.3)
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Initial State

P(X2) = ∑X1, X3 P(X1, X2, X3)

= ∑X1, X3 P(X1)P(X2|X1)P(X3|X2)

= ∑X1 P(X1)P(X2|X1) ∑X3 P(X3|X2)

= ∑X1P(X1)P(X2|X1)

= 0.6 * (0.2, 0.8) + 0.4 * (0.5, 0.5)

= (0.12 + 0.2, 0.48 + 0.2) = (0.32, 0.68)

P(X1) = (0.6, 0.4)

P(X2|X1) =

X1 == 0: (0.2, 0.8)

X1 == 1: (0.5, 0.5)

P(X3|X2) =

X2 == 0: (0.3, 0.7)

X2 == 1: (0.7, 0.3)

X1 X2 X3
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Given that X3 == 1

P(X1|X3 = 1) = β P(X1, X3 = 1)

= β ∑X2 P(X1, X2, X3 = 1)

= β ∑X2 P(X1)P(X2|X1)P(X3 = 1|X2)

= β P(X1) ∑X2 P(X2|X1)P(X3 = 1|X2)

= β P(X1) (0.2 * 0.7 + 0.8 * 0.3, 0.5 * 
0.7 + 0.5 * 0.3)

= β (0.6, 0.4) * (0.38, 0.5)

= β (0.228, 0.2) = (0.53, 0.47)

P(X1) = (0.6, 0.4)

P(X2|X1) =

X1 == 0: (0.2, 0.8)

X1 == 1: (0.5, 0.5)

P(X3|X2) =

X2 == 0: (0.3, 0.7)

X2 == 1: (0.7, 0.3)

X1 X2 X3

29



Factor Graph
 A bipartite graph with one set of vertices corresponding 

to the variables in the Bayesian network and another set 
of vertices corresponding to the local functions (i.e., 
conditional probability tables).

V1 V2

V3

V4

V1 V2

V3

V4

P(V1)

P(V2|V1)

P(V3|V2,V1)

P(V4|V3)
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Singly-Connected Networks

 A singly-connected network has only a single path 
(ignoring edge directions) connecting any two vertices.

s

v w

u y z

x

fA fEfD

fC

fB
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Factorization of
Global Distribution and Inference

 Example network represents the joint probability 
distribution as follows:

 The probability of s given the value of z is 
calculated as
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Cost of Marginalization

 # of states of the variables:
 nu, nv, nw, nx, ny, nz
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The Generalized
Forward-Backward Algorithm

 The generalized forward-backward algorithm 
is one flavor of the probability propagation.

 The generalized forward-backward algorithm:
1. Convert a Bayesian network into the factor graph.
2. The factor graph is arranged as a horizontal tree 

with an arbitrary chosen “root” vertex.
3. Beginning at the left-most level, messages are 

passed level by level forward to the root.
4. Messages are passed level by level backward 

from root to the leaves.
 Messages represent the propagated 

probability through edges of the graphical 
model.
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Convert a Bayesian Network
into the Factor Graph

z1

z8

z5 z6

z9 z10

z7

z4
z3

z2 z1

z8

z5 z6

z9 z10

z7

z4z3
z2

z1

z8

z5

z6

z9

z10

z7 z4

z3

z2
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Message Passing
in Graphical Models

 Two types of messages:
 Variable-to-function messages
 Function-to-variable messages

x

z

y

µx→A

µA → x

fA

fC

fB
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Calculation of Messages

 Variable-to-function message:
 If x is unobserved, then

 If x is observed as x’, then

 Function-to-variable message:

).()()( xxx xCxBAx →→→ = µµµ

es).other valu(for    0)(   ,1)'( == →→ xx AxAx µµ

.)()(),,()( ∑∑ →→→ =
y z

AzAyAxA zyzyxfx µµµ

37



Computation of
Conditional Probability

 After the generalized forward-backward 
algorithm ends, each edge in the factor 
graph has its calculated message values.

 The probability of x given the observations 
v is as follows:

 where β is a normalizing constant.

),()()()|( xxxxP xCxBxA →→→= µµβµv
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The Burglar Alarm Problem

b e

a

P(b = 1) = 0.1 P(e = 1) = 0.1

0.3680.632(1, 0)
0.1350.865(0, 1)

0.6070.393(1, 1)

0.0010.999(0, 0) 
P(a = 1| b, e)P(a = 0| b, e)(b, e)
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Alarm Alert

 Calculate P(b, e|a = 1)
 Because the network structure is simple,

.
)','|()'()'(

),|()()(
)(

),,()|,(
','∑

==
eb

ebaPePbP
ebaPePbP

aP
aebPaebP

P(b=0, e=0| a=1) = 0.016

P(b=0, e=1| a=1) = 0.233

P(b=1, e=0| a=1) = 0.635

P(b=1, e=1| a=1) = 0.116
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Applying the Generalized Forward-
Backward Algorithm

b e

a

fB(b) = P(b) fE(e) = P(e)

fA(a, b, e) = P(a| b, e)
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Forward Pass I

b

e

a

fB(b)

fE(e)

fA(a, b, e)

µB→b

µb→A

µa→A

µA→e

µE→e

µB→b = fB(b) = (0.9, 0.1)

µB→b

µb→A = µB→b = (0.9, 0.1)

µb→A

µa→A = (0, 1)

µa→A
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Forward Pass II

(0.9, 0.1) b

e

a

fB(b)

fE(e)

fA(a, b, e)

µA→e

µE→e
(0.9, 0.1)

(0, 1)

)1822.0,0377.0()1.0607.09.0135.0,1.0368.09.0001.0(

)(),|1(

)()(),,()(
,

=×+××+×=

==

=

→

→→→

∑
∑

bebaP

abebafe

Abb

AaAbab AeA

µ

µµµ

µA→e

µE→e = fE(e) = (0.9, 0.1)

µE→e
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Backward Pass I

(0.9, 0.1) b

e

a

fB(b)

fE(e)

fA(a, b, e)

(0.0377, 0.1822)

(0.9, 0.1)

(0, 1)

µe→E

µe→A

µA→b

µA→a

µb→B

(0.9, 0.1)

µe→A = µE→e = (0.9, 0.1)

µe→A
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Backward Pass II

(0.9, 0.1) b

e

a

fB(b)

fE(e)

fA(a, b, e)

(0.0377, 0.1822)

(0.9, 0.1)

(0.9, 0.1)

(0, 1)

µe→E

µA→b

µA→a

µb→B

)3919.0,0144.0()1.0607.09.0368.0,1.0135.09.0001.0(

)(),|1(

)()(),,()(
,

=×+××+×=

==

=

→

→→→

∑
∑

eebaP

abebafb

Aee

AaAeae AbA

µ

µµµ

µA→b

(0.9, 0.1)
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Finale

(0.9, 0.1) b

e

a

fB(b)

fE(e)

fA(a, b, e)

(0.0377, 0.1822)

(0.9, 0.1)

(0.9, 0.1)

(0, 1)

(0.0144, 0.3919)

µA→a

µb→B

)751.0,249.0())1()1(),0()0(())1|1(),1|0((( ====== →→→→ bAbBbAbBabPabP µµµµβ

(0.9, 0.1)

(0.0144, 0.3919)

µe→E

(0.9, 0.1)

)349.0,651.0())1()1(),0()0(())1|1(),1|0((( ====== →→→→ eAeEeAeEaePaeP µµµµβ

(0.9, 0.1)

(0.0377, 0.1822)
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Inference
in Multiply-Connected Networks

 Probabilistic inference in Bayesian networks 
(also in Markov random fields and factor graphs) 
in general is very hard. (NP-hardness’s been 
proved.)

 Approximate inference
 Use probability propagation in multiply-connected 

networks.  Loopy belief propagation.
 Monte Carlo methods  Sampling
 Variational inference
 Helmholtz machines
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Grouping and Duplicating Variables

V1 V2

V3

V4
V4

V1, V2, V3

Singly-connected

The new variable {V1, V2, V3} has values exponential to the number of 
included variables.
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Initial State

P(Fu), P(CSP), P(St), and P(FMS)
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No Start

P(Fu|St = No), P(CSP|St = No), and P(FMS|St = No)
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Fuel Meter Stands for Half

P(Fu|St = No, FMS = Half) and P(CSP|St = No, FMS = Half)
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Learning Bayesian Networks

Bayesian network learning

* Structure Search
* Score Metric
* Parameter Learning

Data Acquisition Preprocessing

BN = Structure 
+ Local 
probability 
distribution

Prior 
knowledg

e
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Learning Bayesian Networks (cont’d)

 Bayesian network learning consists of 
 Structure learning (DAG structure),
 Parameter learning (for local probability distribution).

 Situations
 Known structure and complete data.
 Unknown structure and complete data.
 Known structure and incomplete data.
 Unknown structure and incomplete data.
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Parameter Learning
 Task: Given a network structure, estimate the parameters 

of the model from data.

SM

S2

S1

LHHL

……..…

HHHH

LLLH

DCBA

A B

C D

P(A)

0.010.99

LH

P(B)

0.070.93

LH

0.60.4(H, H)

0.80.2(H, L)

0.70.3(L, H)

(L, L)

(A, B)

P(C|A, B)

0.20.8

LH

0.10.9H

0.90.1L

B

P(D|B)

LH
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 Key point: independence of parameter estimation

 D={s1, s2, …, sM}, where si=(ai, bi, ci, di) is an instance of a 
random vector variable S=(A, B, C, D).

 Assumption: samples si are independent and identically 
distributed (i.i.d.).
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Independent parameter estimation for each node (variable)
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 One can estimate the parameters for P(A), P(B), P(C|A, B), 
and P(D|B) in an independent manner.
 If A, B, C, and D are all binary-valued,  the number of parameters 

are reduced from 15 (24-1) to 8 (1+1+4+2).

A

)(AP

B

)(BP

A B C D

s1

s2

sM

),|( BACP

A B

C

)|( BDP

B

D

P(A,B,C,D)=P(A)xP(B)xP(C|A,B)xP(D|B)



















MMMM dcba

dcba
dcba



2222

1111
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Methods for Parameter Estimation
 Maximum Likelihood Estimation

 Choose the value of Θ which maximizes the likelihood for the 
observed data D.

 Bayesian Estimation
 Represent uncertainty about parameters using a probability 

distribution over Θ.
 Θ is also a random variable rather than a parameter value.

)|(maxarg);(maxargˆ Θ=Θ=Θ ΘΘ DPDLG

)|()(
)(

)|()()|( ΘΘ∝
ΘΘ

=Θ DPP
DP
DPPDP

posterior prior likelihood
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Bayes Rule, MAP and ML

 Bayes’ rule

)(
)()|()|(

DP
hPhDPDhP =

)|(maxarg* hDPh h=

)|(maxarg* DhPh h=

)|( DhP

h: hypothesis (models or parameters)
D: data

 ML (maximum likelihood) estimation

 MAP (maximum a posteriori) estimation

 Bayesian Learning
 Not a point estimate, but the posterior 

distribution
From NIPS’99 tutorial by Z. 

Ghahramani

59



 Bayesian estimation (for multinomial distribution)

∏ −+∝

∝

k
N

k
kk

DPPDP
1              
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αθ

θθθ

[ ]
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M

N
NE

dDP

dDPkPDkSP
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1

α
αθ

θ

θ

θθ

θθθ

Smoothed version of MLE

s1 s2 s3 sM

θ

Prior P(ө)

Likelihood 
P(D| ө)

θ
Sufficient statistics

Prior knowledge or pseudo counts

),,,(~ 21 KDir αααθ 
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H H T H

θ

H H

( ) ( ), 5,  1H TN N =

( )1 ,1~ Dir
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3
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6
5

15
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+

== θθ θ DP

833.0ˆ)( ≈== HHSP θ

Maximum likelihood estimation

Bayesian inference

An Example: Coin toss
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P(H)
H HH HHT HHTH HHTHH HHTHH

H
HHTHH
HTTHH (100, 50)

MLE 1.00 1.00 0.67 0.75 0.80 0.83 0.70 0.67
B(0.5, 0.5) 0.75 0.83 0.63 0.70 0.75 0.79 0.68 0.67
B(1, 1) 0.67 0.75 0.60 0.67 0.71 0.75 0.67 0.66
B(2, 2) 0.60 0.67 0.57 0.63 0.67 0.70 0.64 0.66
B(5, 5) 0.55 0.58 0.54 0.57 0.60 0.63 0.60 0.65

Dirichlet prior
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B(1, 1)

B(2, 2) B(5, 5)

B(0.5, 0.5)

Variation of posterior distribution for the parameter
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Structure Learning

 Task: Given a data set, search a most plausible 
network structure underlying the generation of the data 
set.
Metric-based approach
Use a scoring metric to measure how well a particular structure fits the 
observed set of cases.

A B C D
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S2 H H H H

… … … …
SM L H H L
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A B
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DC

A B

Score

Scorin
g 
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Search 
strateg
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Scoring Metric
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Prior for network 
structure

Marginal likelihood

 Likelihood Score

 Nodes of  high mutual information (dependency) with 
their parents get higher score.

 Since, I(X;Y) ≤ I(X; {Y, Z}), the fully connected network 
is obtained in an unrestricted case.

 Prone to overfitting. 
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Bayesian Score
 Consider the uncertainty in parameter estimation in 

Bayesian network

 Assuming a complete data and parameter independence, 
the marginal likelihood can be rewritten as
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Marginal likelihood for each pair of 
(Xi;Pa(Xi))
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Bayesian Dirichlet Score
 For a multinomial case, if we assume a Dirichlet 

prior for each parameter (Heckerman, 1995),
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Bayesian Dirichlet Score (cont’d)
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Bayesian Dirichlet Score (cont’d)
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 log P(D|G) in Bayesian score is asymptotically equivalent 
to BIC and minus the MDL criterion.
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Structure Search
 Given a data set, a score metric, and a set of 

possible structures, 
 Find the network structure with maximal score.
 Discrete optimization

 One can utilize the property of  independent 
score for each pair of (Xi, Pa(Xi)).

( )∏
=

=
N

i
ii GXXDPGDP

1

|))(;()|( Pa

∑
=

==
N

i
ii XPaXScoreGDPDGScore

1
))(;()|(log);(

71



Tree-Structured Networks
 Definition: Each node has at most one parent.

 An effective search algorithm exists.
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Improvement over empty network

Score for empty 
network

Chow and Liu (1968)
Construct the undirected complete graph with 
the weights of edge E(Xi, Xj) being I(Xi; Xj).

Build a maximum weighted spanning tree.

Transform to a directed tree with an arbitrary 
root node.
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Search Strategies
for General Bayesian Networks

 With more than one parents per node  NP-hard
(Chickering et al., 1996)

 Heuristic search methods are usually employed.
 Greedy hill-climbing (local search)
 Greedy hill-climbing with random restart
 Simulated annealing
 Tabu search
 …
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Greedy Local Search Algorithm
INPUT: Data set, Scoring Metric,

Possible Structures

Initialize the structure
• empty network, random network, 

tree-structured network, etc.   

Do a local edge operation resulting in 
the largest improvement in score
among all possible operations

Score(Gt+1;D)>Score(Gt;D)
YES

NO

Gfinal = Gt

A B

C D

DELETE

A B

C D

REVERSE

A B

C D

INSERT

A B

C D
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Enhanced Search
 Greedy local search can get stuck in local maxima or plateaux.
 Standard heuristics to escape the two includes

 Search with random restarts, simulated annealing, tabu search.
 Genetic algorithm: a population-based search.
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Greedy search
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Random restart
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Population-based search (GA)
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 Basic Concepts of Bayesian Networks
 Inference in Bayesian Networks
 Learning Bayesian Networks

 Parametric Learning
 Structural Learning

 Conclusion
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Conclusion

 Bayesian networks provide an efficient/effective framework for 
organizing the body of knowledge by encoding the probabilistic 
relationships among variables of interest.
 Graph theory + probability theory: DAG + local probability 

distribution.
 Conditional independence and conditional probability are keystones.
 A compact way to express complex systems by simpler probabilistic 

modules and thus a natural framework for dealing with complexity 
and uncertainty.

 Two problems in the learning of Bayesian networks from data
 Parameter estimation: MLE, MAP, Bayesian estimation
 Structural learning: tree-structured network, heuristic search for 

general Bayesian network.
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 Bayes Net Toolbox (by Kevin Murphy)
 https://code.google.com/p/bnt/
 A variety of algorithms for learning and inference in graphical models 

(written in MATLAB).
 WEKA

 http://www.cs.waikato.ac.nz/~ml/weka/
 Bayesian network learning and classification modules are included among a 

collection of machine learning algorithms (written in JAVA).
 A number of Bayesian network packages in R

 http://www.bnlearn.com/
 bnlearn, gRbase, and others.

 A detailed list and comparison are referred to
 http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html

Bayesian Network
Software Packages

80

https://code.google.com/p/bnt/
http://www.cs.waikato.ac.nz/%7Eml/weka/
http://www.bnlearn.com/
http://www.cs.ubc.ca/%7Emurphyk/Bayes/bnsoft.html


Source: Writing and reading a book with DNA, IEEE Spectrum (August 2012)

Thank You
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