

베이즈망 Bayesian Networks

한국정보과학회 인공지능소사이어티

제10회 패턴인식 및 기계학습 겨울학교 *딥러닝 기초, 이론 및 응용*

2016년 1월 21일 (목) 16:00-18:00

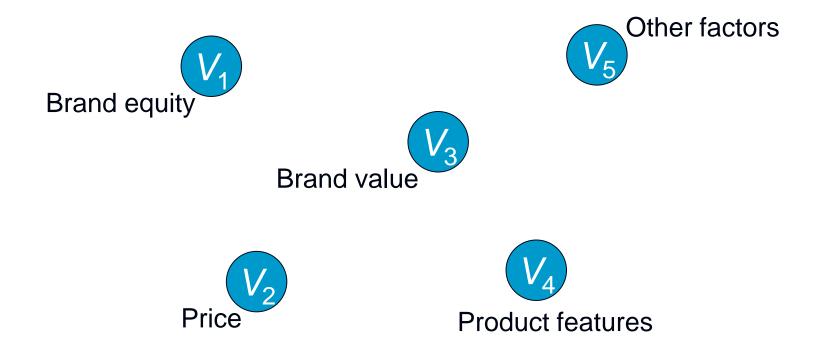
숭실대학교 기계학습연구실 황규백 <u>kbhwang@ssu.ac.kr; http://ml.ssu.ac.kr</u>

Basic Concepts of Bayesian Networks

- Inference in Bayesian Networks
- Learning Bayesian Networks
 - Parametric Learning
 - Structural Learning
- Conclusion

Our Problem Domain

Discrete random variables



Joint Probability Distribution

• $P(V_1, V_2, V_3, V_4, V_5)$ can be represented as a table.

V_1, V_2, V_3, V_4, V_5	$P(V_1, V_2, V_3, V_4, V_5)$		
Value 1	Probability 1		
Value 2	Probability 2		
	•••		

Probabilistic Inference

P(Brand value| Brand equity, Price)?

$$P(V_{3} | V_{1}, V_{2}) = \frac{P(V_{1}, V_{2}, V_{3})}{P(V_{1}, V_{2})}$$
 Marginalization
$$= \frac{\sum_{V_{4}, V_{5}} P(V_{1}, V_{2}, V_{3}, V_{4}, V_{5})}{\sum_{V_{3}, V_{4}, V_{5}} P(V_{1}, V_{2}, V_{3}, V_{4}, V_{5})}$$

- Any conditional probabilities can be calculated in principle.
 - Exponential time complexity

It is too expensive to store all joint probabilities.

- Probability table size is exponential to the number of variables.
 - If all variables are binary, the table size amounts to (2ⁿ – 1) where n is the number of variables.
 - Space and time complexity for storing probabilities and marginalization is formidable in practice.

Probabilistic independence can facilitate the use of joint probability distribution.

In the Extreme Case

Let us assume that all variables are independent from one another.
by chain rule

 $P(V_1, V_2, V_3, V_4, V_5)$ $= P(V_1) \cdot P(V_2 | V_1) \cdot P(V_3 | V_1, V_2) \cdot P(V_4 | V_1, V_2, V_3) \cdot P(V_5 | V_1, V_2, V_3, V_4)$ $= P(V_1) \cdot P(V_2) \cdot P(V_3) \cdot P(V_4) \cdot P(V_5)$

Table size comparison in binary case

# of variables	1	2	3	4	5	6
n	1	2	3	4	5	6
2 ^{<i>n</i>} – 1	1	3	7	15	31	63

Between the Two Extremes

- Too complicated
 - All variables are dependent on each other.

Too simple

- All variables are independent from each other.
- A reasonable compromise
 - Some variables are dependent on other variables.
 - Conditional independence

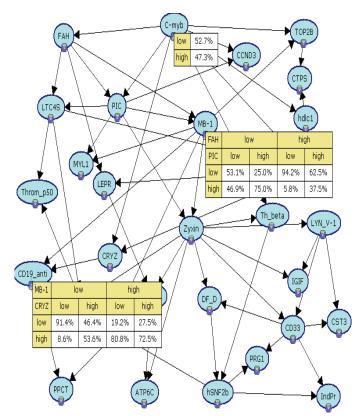
Conditional Independence

Probabilistic independence

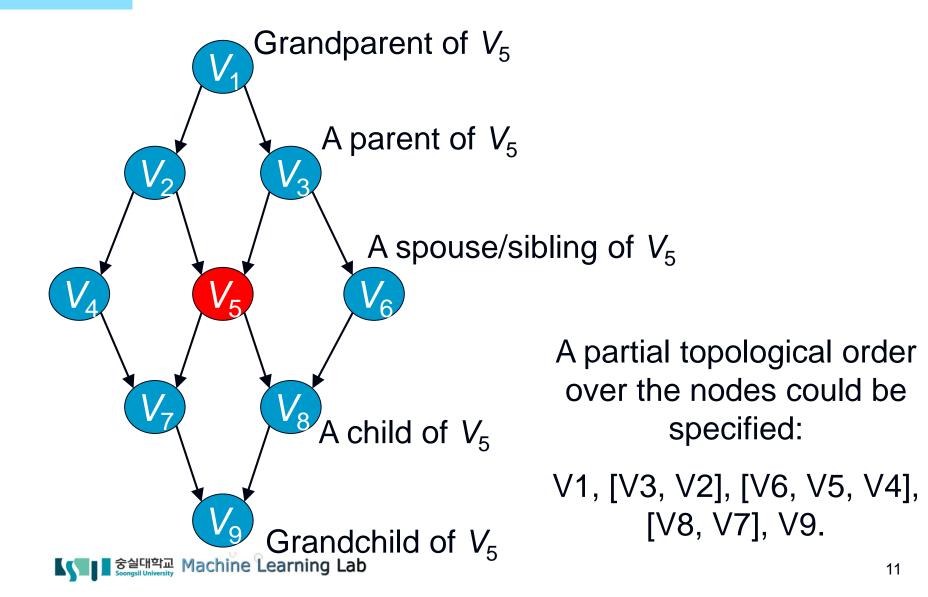
- X and Y are independent from each other.
- $\bullet P(X, Y) = P(X) \cdot P(Y)$
- Conditional (probabilistic) independence
 - X and Y are conditionally independent from each other given the value of Z.
 - $\blacksquare P(X, Y|Z) = P(X|Z) \cdot P(Y|Z)$
- How to describe dependencies among variables efficiently?

The Bayesian Network

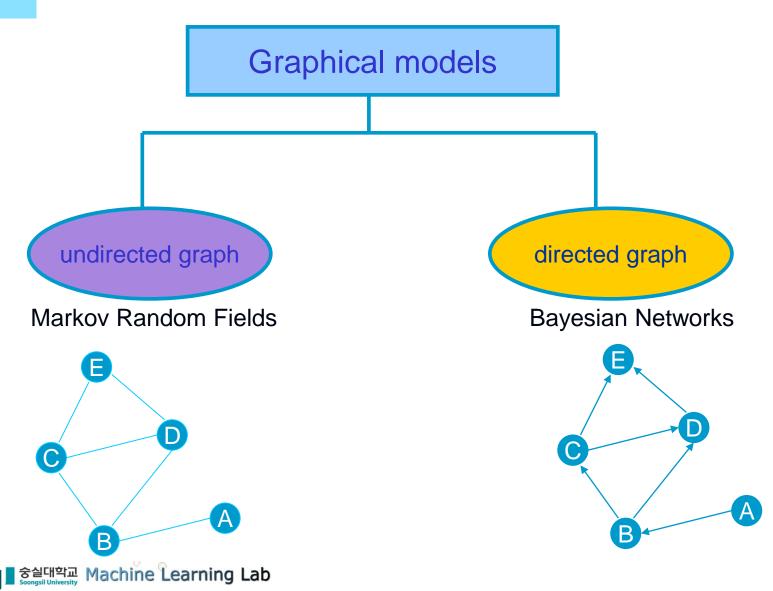
- Compact representation of joint probability distribution
- Qualitative part: graph theory
 - Directed acyclic graph (DAG)
 - Vertices (nodes): variables
 - Edges: dependency or influence of a variable on another.
- Quantitative part: probability theory
 - Set of (conditional) probabilities for all variables
- Naturally handles the problem of complexity and uncertainty.



Directed Acyclic Graph Structures



Probabilistic Graphical Models

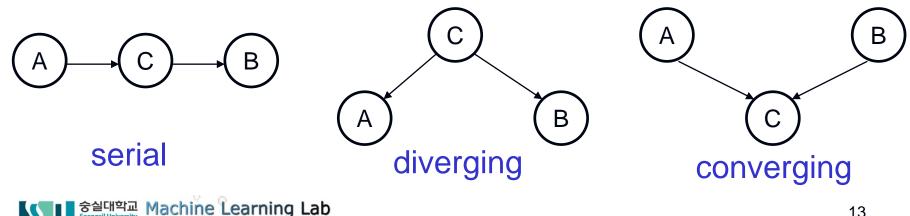


DAG for Encoding **Conditional Independencies**

d-separation:

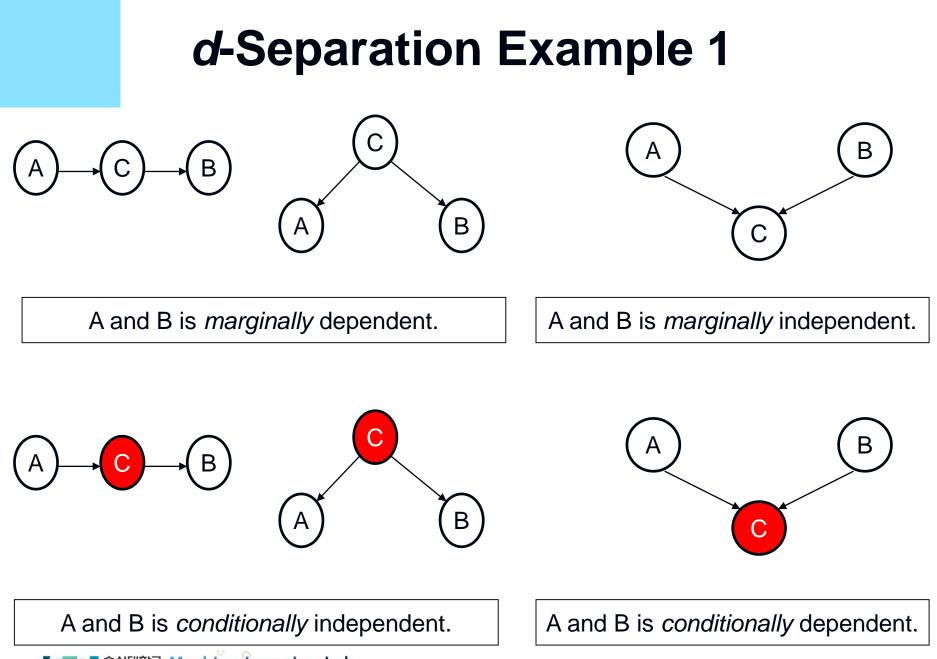
- Two nodes (variables) in a DAG are d-separated if for all paths between them, there is an intermediate node C such that,
 - the connection is "serial" or "diverging" and the state of C is known or
 - the connection is "converging" and neither C nor any of C's descendants have received evidence.

Connections in DAGs

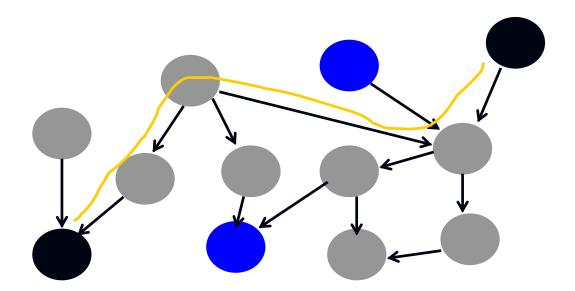


d-Separation and Conditional Independence

Two random variables are conditionally independent from each other if the corresponding vertices in the DAG are *d*separated.

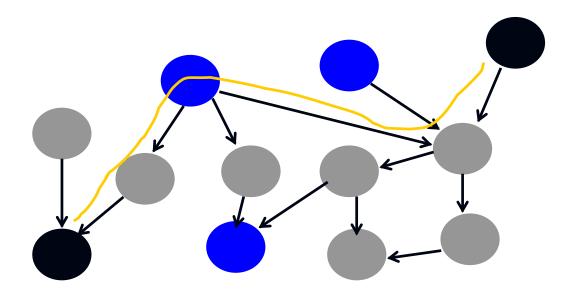


d-Separation Example 2



There exists a non-blocked path. Hence, two black nodes (variables) are not *d*-separated and dependent on each other.

d-Separation Example 2



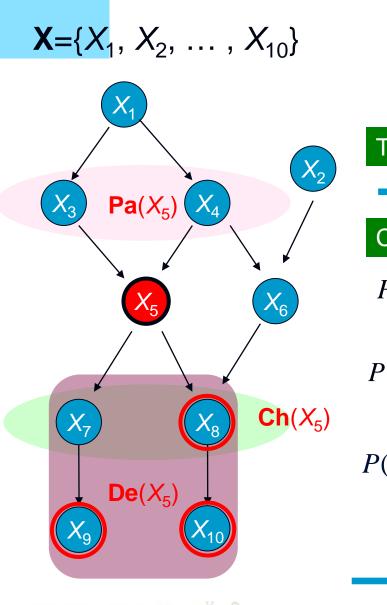
Every path is blocked now. Hence, the two black nodes (variables) are *d*-separated and independent from each other.

Definition: Bayesian Networks

- The Bayesian network consists of the following.
 - A set of *n* variables $\mathbf{X} = \{X_1, X_2, ..., X_n\}$ and a set of directed edges between the variables (vertices).
 - The variables with the directed edges form a directed acyclic graph (DAG) structure.

Directed cycles are not modeled.

- To each variable X_i and its parents Pa(X_i), there is attached a conditional probability table for P(X_i|Pa(X_i)).
 - Modeling for continuous variables is also possible.



Pa(X_5): the parents of X_5 **Ch**(X_5): the children of X_5 **De**(X_5): the descendents of X_5 Topological sort of $X_i \in \mathbf{X}$ $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}$ Chain rule in a reverse order $P(\mathbf{X} \setminus \{X_{10}\}, X_{10}) = P(\mathbf{X} \setminus \{X_{10}\}) P(X_{10} \mid \mathbf{X} \setminus \{X_{10}\})$ $= P(\mathbf{X} \setminus \{X_{10}\}) P(X_{10} \mid X_8)$ $P(\mathbf{X} \setminus \{X_{9}\}, X_{9}) = P(\mathbf{X} \setminus \{X_{9}\}) P(X_{9} \mid \mathbf{X} \setminus \{X_{9}\})$ $= P(\mathbf{X} \setminus \{X_9\}) P(X_9 \mid X_7)$ $P(\mathbf{X}'' \{X_{8}\}, X_{8}) = P(\mathbf{X}'' \{X_{8}\}) P(X_{8} | \mathbf{X}'' \{X_{8}\})$ $= P(\mathbf{X}'' \{X_8\}) P(X_8 | X_5, X_6)$

•
$$P(X) = P(X_1, \dots, X_{10}) = \prod_i P(X_i | Pa(X_i))$$

중실대학교 Machine Learning Lab

Bayesian Networks Represent Joint Probability Distribution

By the *d*-separation property, the Bayesian network over *n* variables X = {X₁, X₂, ..., X_n} represents P(X) as follows:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | \mathbf{Pa}(X_i)).$$

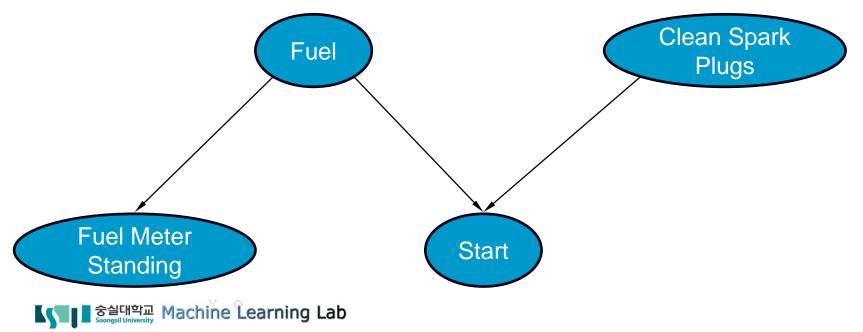
Causal Networks

Node: event

Arc: causal relationship between the two nodes

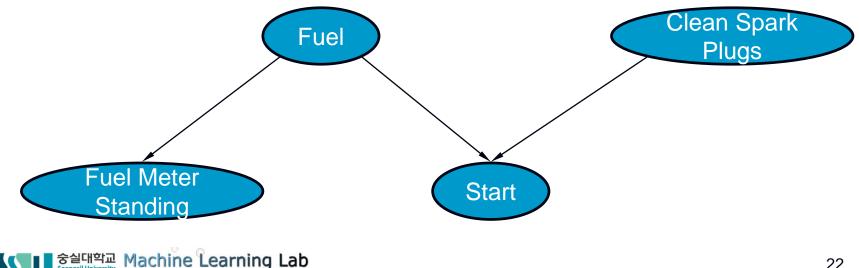
• $A \rightarrow B$: A causes B.

 Causal network for the car start problem (Jensen and Nielson, 2007)



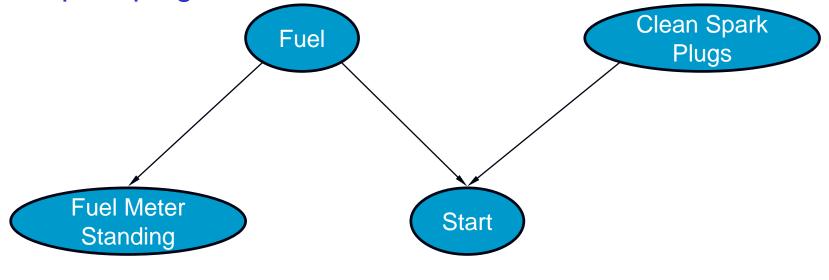
d-separation: Car Start Problem

- 'Start' and 'Fuel' are dependent on each other. 1.
- 'Start' and 'Clean Spark Plugs' are dependent on each other. 2.
- 'Fuel' and 'Fuel Meter Standing' are dependent on each other. 3.
- 'Fuel' and 'Clean Spark Plugs' are conditionally dependent on 4. each other given the value of 'Start'.
- 5. 'Fuel Meter Standing' and 'Start' are conditionally independent given the value of 'Fuel'.



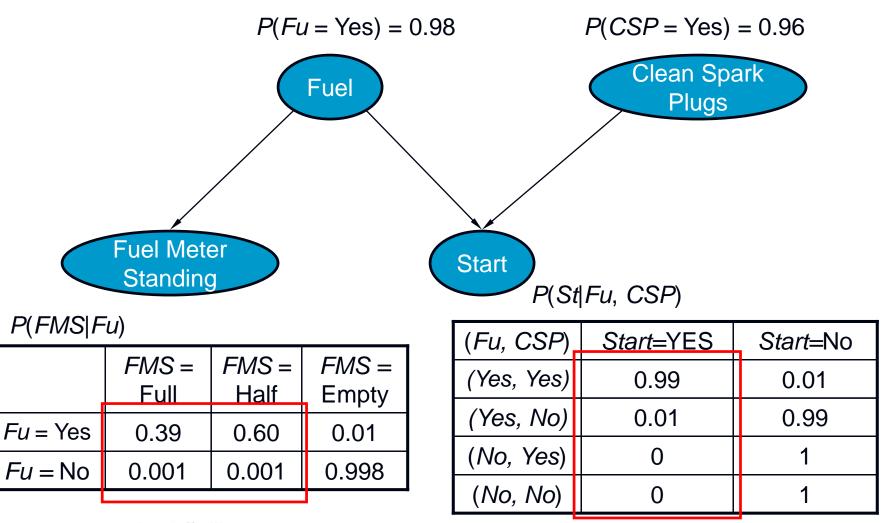
Reasoning with Causal Networks

- My car does not start. → Increases the certainty of no fuel and dirty spark plugs. → Increases the certainty of fuel meter's standing for the empty.
- Fuel meter stands for the half. → Decreases the certainty of no fuel → Increases the certainty of dirty spark plugs.



대학교 Machine Learning Lab

Bayesian Network for the Car Start Problem [Jensen and Nielson, 2007]



Basic Concepts of Bayesian Networks

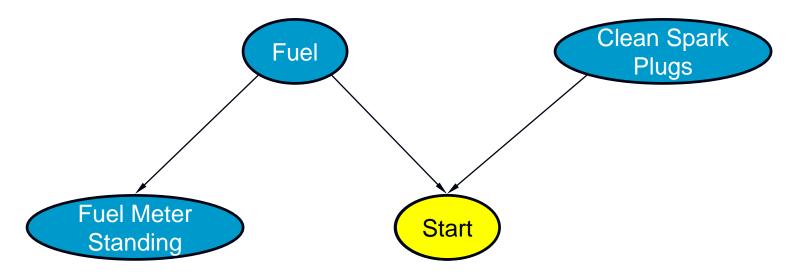
Inference in Bayesian Networks

Learning Bayesian Networks

- Parametric Learning
- Structural Learning
- Conclusion

Inference in Bayesian Networks

Infer the probability of an event given some observations.



How probable is that the spark plugs are dirty? In other words, what's the probability P(CSP = No| St = No)?

Inference Example

 $X_1 \longrightarrow X_2 \longrightarrow X_3$ $P(X_1) = (0.6, 0.4)$ $P(X_2|X_1) =$ $X_1 == 0: (0.2, 0.8)$ $X_1 == 1: (0.5, 0.5)$ $P(X_3|X_2) =$ $X_2 == 0: (0.3, 0.7)$ $X_2 == 1: (0.7, 0.3)$

Initial State

$$X_1 \longrightarrow X_2 \longrightarrow X_3$$

 $P(X_{2}) = \sum_{X_{1}, X_{3}} P(X_{1}, X_{2}, X_{3})$ $= \sum_{X_{1}, X_{3}} P(X_{1}) P(X_{2}|X_{1}) P(X_{3}|X_{2})$ $P(X_{1}) = (0.6, 0.4)$ $P(X_{2}|X_{1}) =$ $\sum_{X_{1}} P(X_{1}) P(X_{2}|X_{1}) \sum_{X_{3}} P(X_{3}|X_{2})$ $X_{1} == 0: (0.2, 0.8)$ $X_{1} == 1: (0.5, 0.5)$ $P(X_{3}|X_{2}) =$ $P(X_{3}|X_$

= (0.12 + 0.2, 0.48 + 0.2) = (0.32, 0.68)

Given that $X_3 == 1$

$$X_1 \longrightarrow X_2 \longrightarrow X_3$$

 $P(X_1|X_3 = 1) = \beta P(X_1, X_3 = 1)$

$$= \beta \sum_{X_2} P(X_1, X_2, X_3 = 1)$$

$$= \beta \sum_{X_2} P(X_1) P(X_2 | X_1) P(X_3 = 1 | X_2)$$

$$= \beta P(X_1) \sum_{X_2} P(X_2|X_1) P(X_3 = 1|X_2)$$

$$= \beta P(X_1) (0.2 * 0.7 + 0.8 * 0.3, 0.5 * 0.7 + 0.5 * 0.3)$$

 $=\beta$ (0.6, 0.4) * (0.38, 0.5)

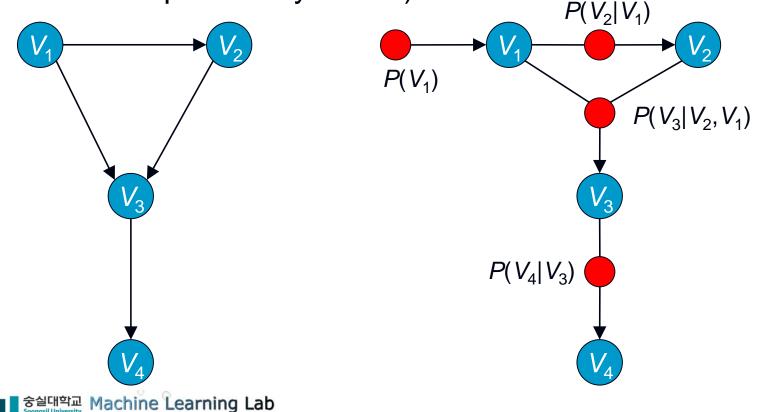
 $=\beta$ (0.228, 0.2) = (0.53, 0.47)

중실대학교 Machine Learning Lab

 $P(X_1) = (0.6, 0.4)$ $P(X_2|X_1) =$ $X_1 == 0: (0.2, 0.8)$ $X_1 == 1: (0.5, 0.5)$ $P(X_3|X_2) =$ $X_2 == 0: (0.3, 0.7)$ $X_2 == 1: (0.7, 0.3)$

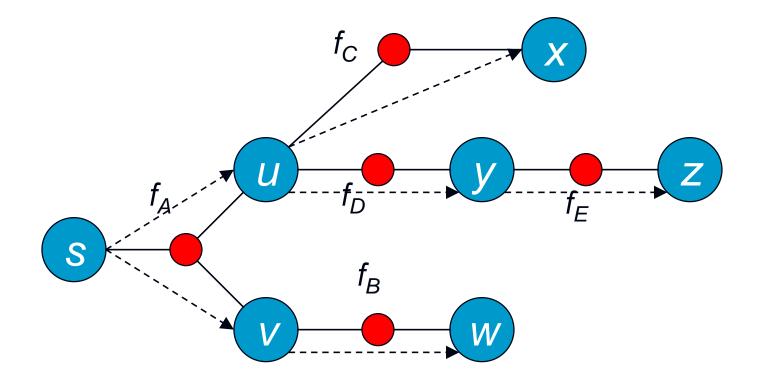
Factor Graph

A bipartite graph with one set of vertices corresponding to the variables in the Bayesian network and another set of vertices corresponding to the local functions (i.e., conditional probability tables).



Singly-Connected Networks

 A singly-connected network has only a single path (ignoring edge directions) connecting any two vertices.



Factorization of Global Distribution and Inference

Example network represents the joint probability distribution as follows:

 $P(s, u, v, w, x, y, z) = f_A(s, u, v) f_B(v, w) f_C(u, x) f_D(u, y) f_E(y, z).$

The probability of s given the value of z is calculated as

$$P(s | z = z') = P(s, z = z') / \sum_{s} P(s, z = z'),$$

$$P(s, z = z') = \sum_{u,v,w,x,y} P(s, u, v, w, x, y, z = z'),$$

$$P(s, z = z')$$

$$= \sum_{u,v} f_A(s, u, v) \{ \sum_{w} f_B(v, w) \} \{ [\sum_{x} f_C(u, x)] [\sum_{y} f_D(u, y) f_E(y, z = z')] \}.$$

Cost of Marginalization

• # of states of the variables: • n_{U} , n_{V} , n_{W} , n_{X} , n_{y} , n_{z} $P(s, z = z') = \sum_{u,v,w,x,y} P(s, u, v, w, x, y, z = z')$ $n_{u} \times n_{v} \times n_{w} \times n_{x} \times n_{y}$ P(s, z = z')

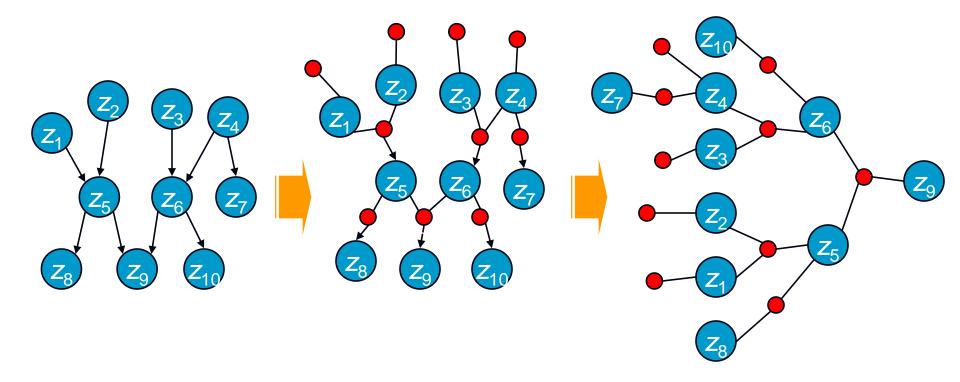
 $= \sum_{u,v} f_A(s,u,v) \{ \sum_w f_B(v,w) \} \{ [\sum_x f_C(u,x)] [\sum_y f_D(u,y) f_E(y,z=z')] \}$

$$n_u \times n_v + n_w + n_x + n_y$$

The Generalized Forward-Backward Algorithm

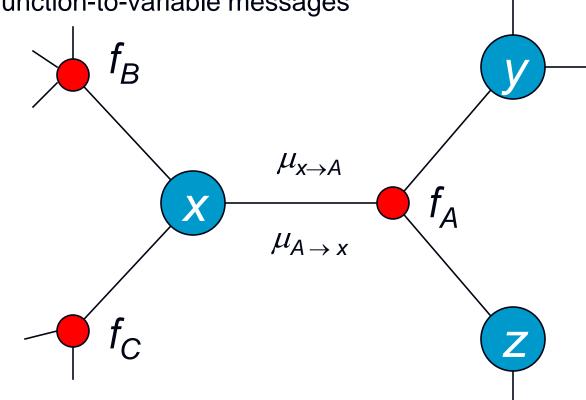
- The generalized forward-backward algorithm is one flavor of the probability propagation.
- The generalized forward-backward algorithm:
 - 1. Convert a Bayesian network into the factor graph.
 - 2. The factor graph is arranged as a horizontal tree with an arbitrary chosen "root" vertex.
 - 3. Beginning at the left-most level, messages are passed level by level forward to the root.
 - 4. Messages are passed level by level backward from root to the leaves.
- Messages represent the propagated probability through edges of the graphical model.

Convert a Bayesian Network into the Factor Graph



Message Passing in Graphical Models

- Two types of messages:
 - Variable-to-function messages
 - Function-to-variable messages



Calculation of Messages

Variable-to-function message: If x is unobserved, then

 $\mu_{x\to A}(x) = \mu_{B\to x}(x)\mu_{C\to x}(x).$

If x is observed as x', then

 $\mu_{x \to A}(x') = 1$, $\mu_{x \to A}(x) = 0$ (for other values).

• Function-to-variable message: $\mu_{A \to x}(x) = \sum_{y} \sum_{z} f_A(x, y, z) \mu_{y \to A}(y) \mu_{z \to A}(z).$

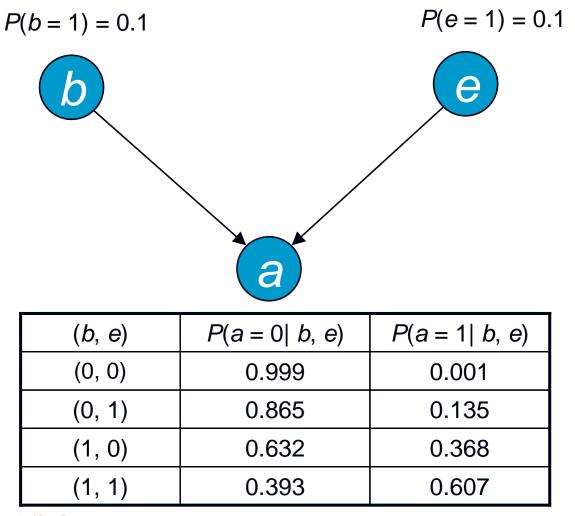
Computation of Conditional Probability

- After the generalized forward-backward algorithm ends, each edge in the factor graph has its calculated message values.
- The probability of x given the observations v is as follows:

$$P(x \mid \mathbf{v}) = \beta \mu_{A \to x}(x) \mu_{B \to x}(x) \mu_{C \to x}(x),$$

• where β is a normalizing constant.

The Burglar Alarm Problem



중실대학교 Machine Learning Lab

Alarm Alert

• Calculate P(b, e|a = 1)

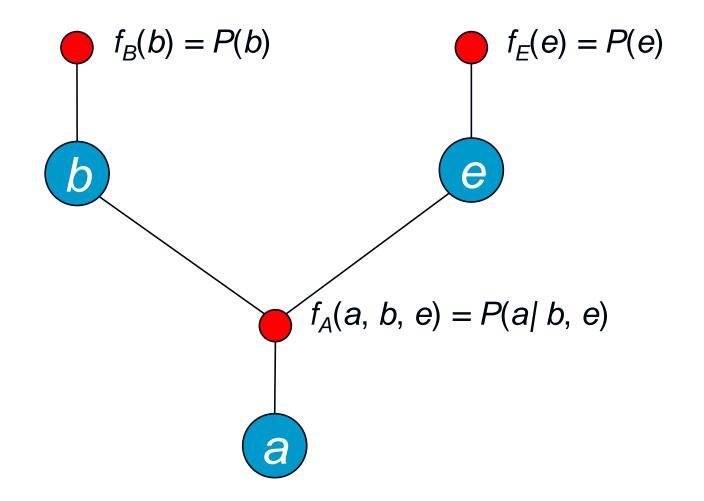
Because the network structure is simple,

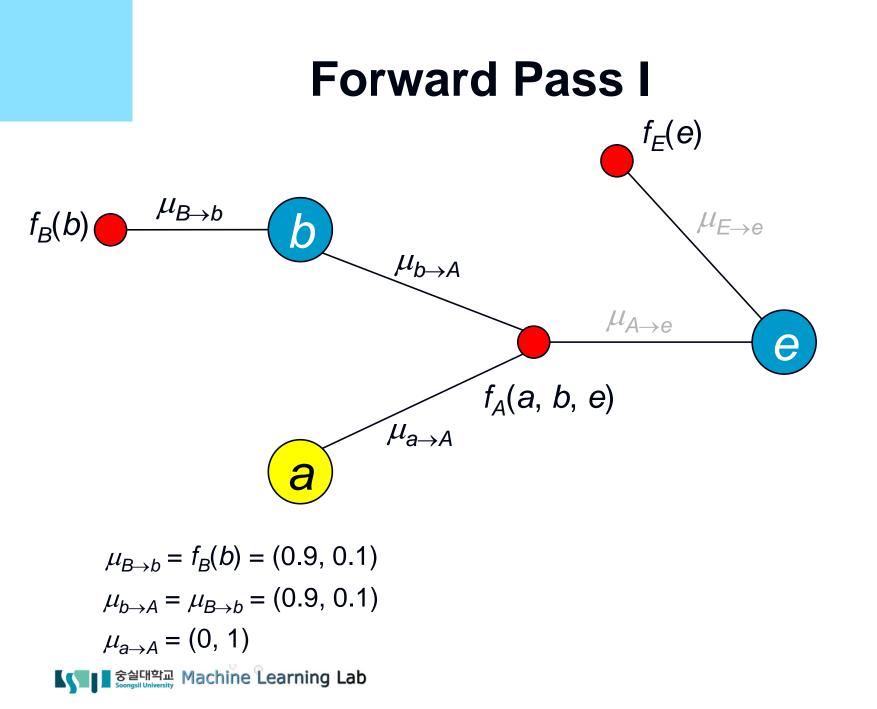
$$P(b,e \mid a) = \frac{P(b,e,a)}{P(a)} = \frac{P(b)P(e)P(a \mid b,e)}{\sum_{b',e'} P(b')P(e')P(a \mid b',e')}.$$

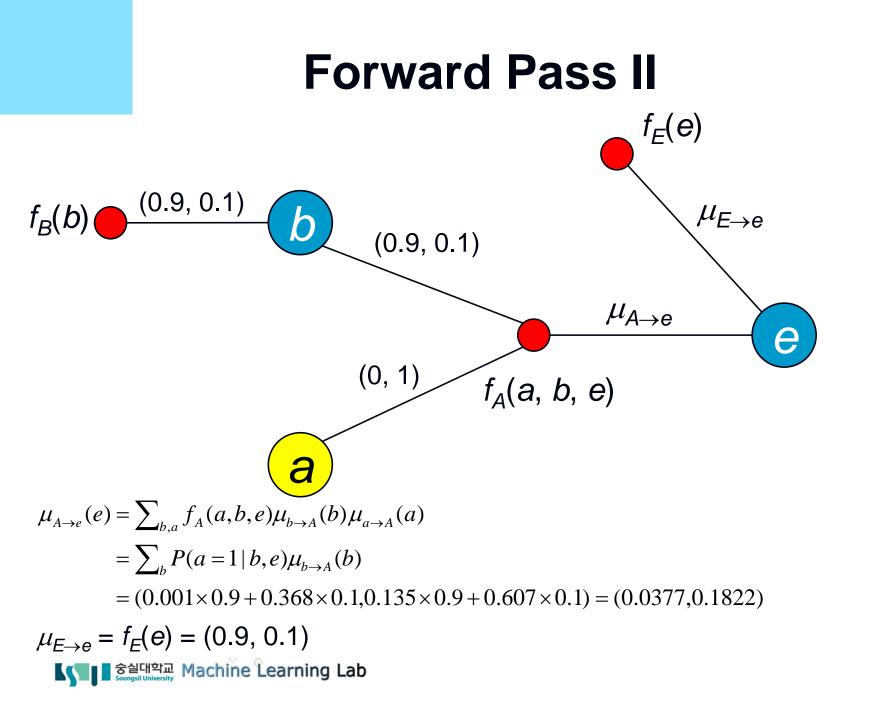
$$P(b=0, e=0|a=1) = 0.016$$

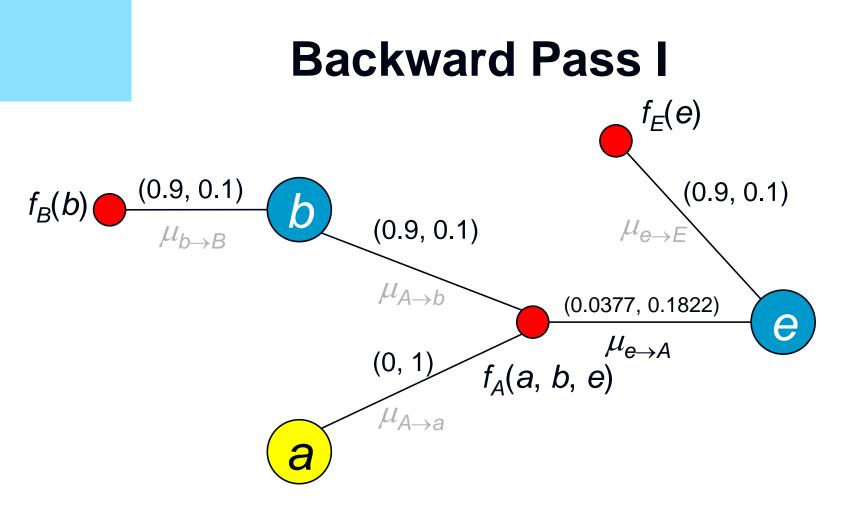
 $P(b=0, e=1|a=1) = 0.233$
 $P(b=1, e=0|a=1) = 0.635$
 $P(b=1, e=1|a=1) = 0.116$

Applying the Generalized Forward-Backward Algorithm

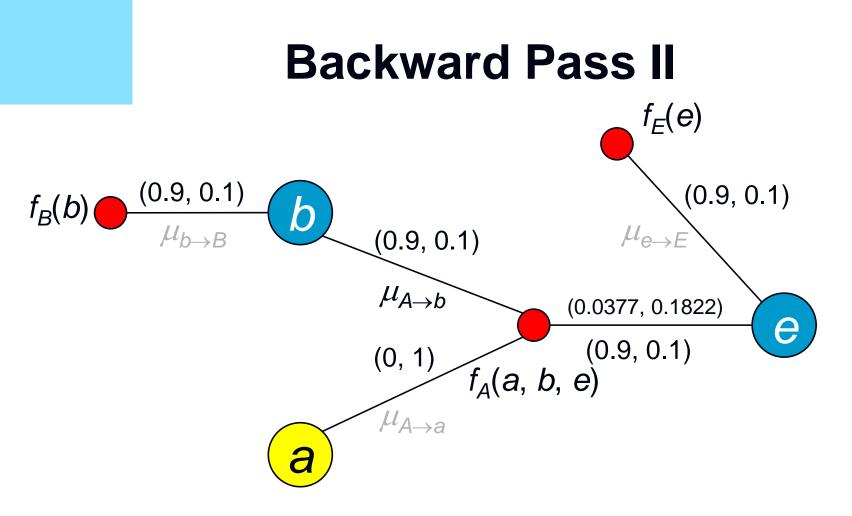






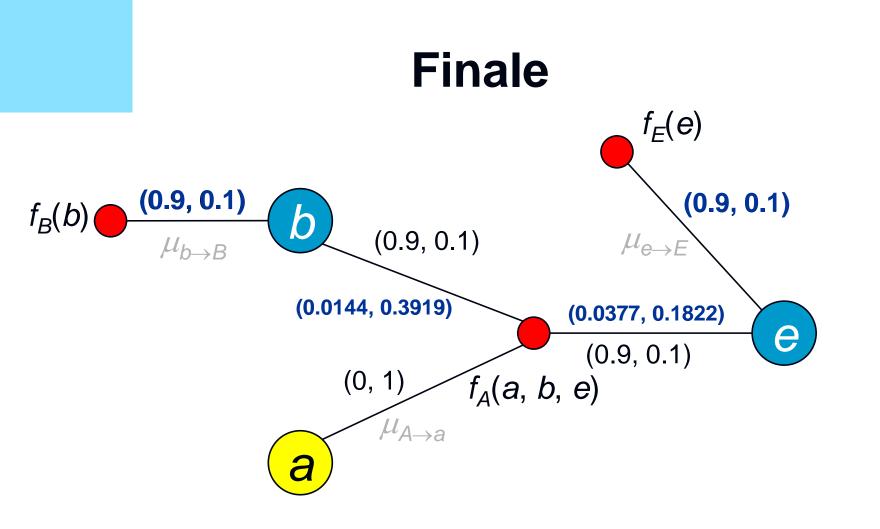


 $\mu_{e \to A} = \mu_{E \to e} = (0.9, 0.1)$



$$\mu_{A \to b}(b) = \sum_{e,a} f_A(a,b,e) \mu_{e \to A}(b) \mu_{a \to A}(a)$$

= $\sum_e P(a=1|b,e) \mu_{e \to A}(e)$
= $(0.001 \times 0.9 + 0.135 \times 0.1, 0.368 \times 0.9 + 0.607 \times 0.1) = (0.0144, 0.3919)$



 $((P(b=0 \mid a=1), P(b=1 \mid a=1)) = \beta(\mu_{B \to b}(0)\mu_{A \to b}(0), \mu_{B \to b}(1)\mu_{A \to b}(1)) = (0.249, 0.751)$ $((P(e=0 \mid a=1), P(e=1 \mid a=1)) = \beta(\mu_{E \to e}(0)\mu_{A \to e}(0), \mu_{E \to e}(1)\mu_{A \to e}(1)) = (0.651, 0.349)$

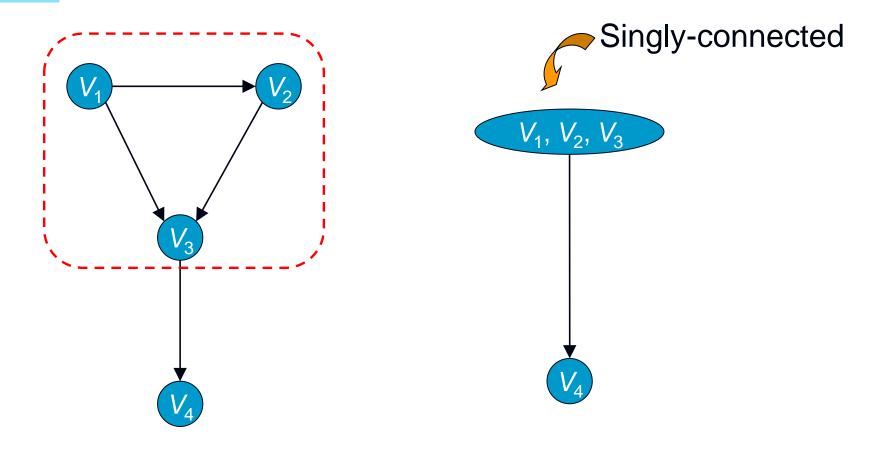
Inference in Multiply-Connected Networks

 Probabilistic inference in Bayesian networks (also in Markov random fields and factor graphs) in general is very hard. (NP-hardness's been proved.)

Approximate inference

- Use probability propagation in multiply-connected networks. → Loopy belief propagation.
- Monte Carlo methods → Sampling
- Variational inference
- Helmholtz machines

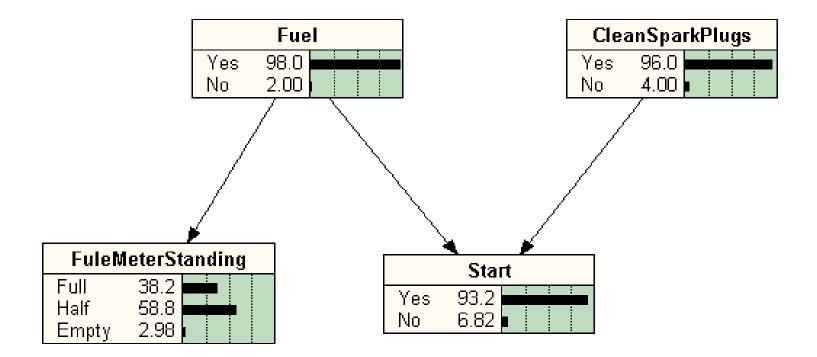
Grouping and Duplicating Variables



The new variable { V_1 , V_2 , V_3 } has values exponential to the number of included variables.

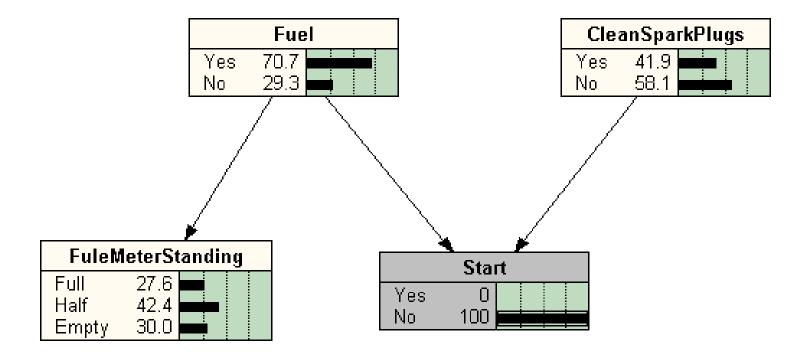
Initial State

P(Fu), P(CSP), P(St), and P(FMS)



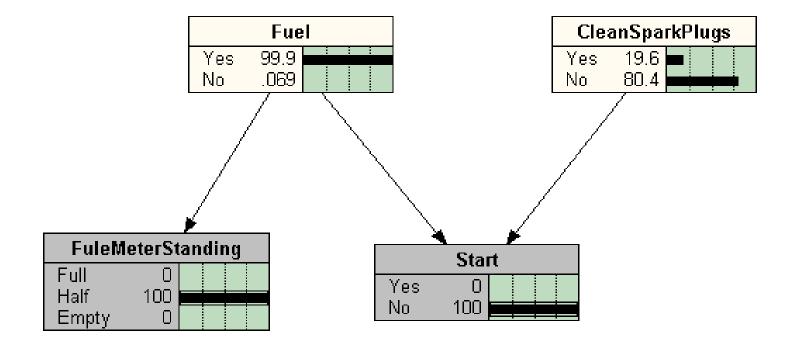
No Start

P(Fu|St = No), P(CSP|St = No), and P(FMS|St = No)



Fuel Meter Stands for Half

P(Fu|St = No, FMS = Half) and P(CSP|St = No, FMS = Half)



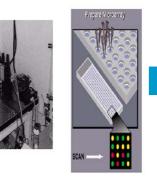
Basic Concepts of Bayesian Networks Inference in Bayesian Networks

Learning Bayesian Networks

- Parametric Learning
- Structural Learning
- Conclusion

Learning Bayesian Networks

Data Acquisition



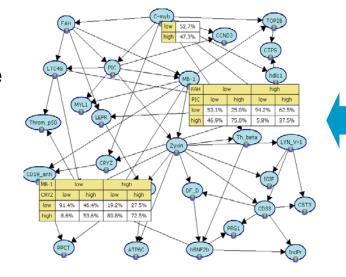
Туре	AL	AL	ALL	ALL.	ALL	ALL	ALL
C-myb gene ext	0,070394	-0,82217	0,716344	1,131405	0,233903	0,162031	0,44368
FAIL Fumarylacet	-0.77978	0.302268	0.307428	-0.33079	-0.6456	-0.71613	-0.43744
PROTEASOME I	-0,16872	-0,00178	1,757656	0,160664	0,731457	0,313285	0,859118
Leukotriene C4 :	-0.35536	-0.42588	-0.0437	-0.56238	-0.5783	-0.67612	-0.42133
MB-1 gene	2,449767	-0,62785	-0,72532	0,985242	0,999843	-0,85162	0,923916
Zyxin	-0.55262	-0.5468	-0.54526	-0.28831	-0.27493	-0.58675	-0.71723
CCND3 Cyclin D	0,66628	-0,19681	0,727751	0,925871	0,110547	0,002142	0,334003
LYN V-yes-1 Ya	-0.50145	-0.19667	-0.80388	0.096339	-0.12371	-0.57559	-0.54852
RETINOBLASTO	0,297921	0,105572	1,166565	-0,03051	0,295875	0,230394	0,264158
CD33 CD33 anti	-0.24201	-0.69504	-0.1061	-0.16556	0.137399	-0.81679	-0.74317
CRYZ Crystallin	1,026087	-0,60442	1,076411	-0,00053	1,036152	0,049795	0,875114
DF D component	-0.51493	-0.41859	-0.56443	-0.55206	-0.26171	-0.40754	-0.55162
MYL1 Myosin lig	0,590023	-0,00984	0,354404	0,110489	0,725155	-0,32856	-0,41962
LEPR Leptin rec	-0.12785	-0.63088	-0.17758	0.094024	-0.27321	-0.75904	-0.38989
Thymopoletin be	1,977269	-0,55047	1,107213	0,695081	0,402009	0,612655	0,017353
GB DEF = Hone	-0.06605	-0.7996	0.664826	-0.02071	-0.79694	-0.72225	0.846213
Transcriptional a	0,890634	-0,48766	0,635658	-0,78722	-0,15067	0,87102	-0,92273
Liver mRNA for i	-0.48091	0.04737	-0.78419	0.918059	-0.13851	-0.8918	-0.08959
TCF3 Transcripti	0,316706	-0,15394	-0,48963	0,678053	0,318937	-0,27773	-0,1004

Preprocessing

Type	ALL	ALL	ALL	ALL	ALL	ALL	ALL	ALL
C-myb gen	high	low	high	high	high	high	high	high
FAH Fumary	bw	high	high	low	lov	low.	low	high
PROTEASC	bw	low	high	high	high	high	high	low
Leukobiene	bw	low	low	low	lov	low.	low	high
MB-1 gene	high	low.	low	high	high	low.	high	high
Zyxin	low	low	low	low	low	iow .	low	low
CCND3 Cyr	high	OW	high	high	high	high	high	high
L'WV-yes	low	low	low	high	low	low	low	low
RETINOBL/	high	high	high	low	high	high	high	low.
CD33 CD3.	bw	low .	low	low	high	W0	low	low.
CRYZ Crys	high	low	high	low	high	high	high	high
DF D comp	юw	low:	low	low	lov	low.	low	04
MYL1 Myo	high	low	high	high	high	iow	low	low
LEPR Lepti	юw	low	low	high	lov	low.	low	high
Thymopole	high	low	high	high	high	high	high	high
G8 DEF = H	low	low	high	low	lov	low .	high	0#
Transcriptio	high	low .	high	low	lov	high	low	IQM.
Liver mRNA	low	high	low	high	lov	low .	low	low

Prior knowledg

BN = Structure + Local probability distribution



Bayesian network learning

- * Structure Search
- * Score Metric
- * Parameter Learning

Learning Bayesian Networks (cont'd)

Bayesian network learning consists of

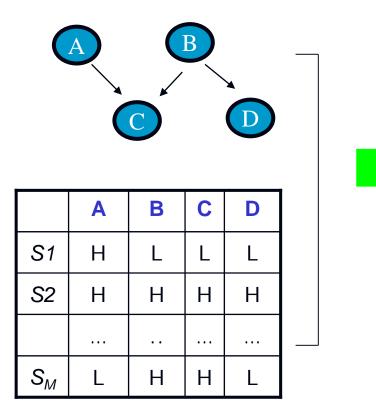
- Structure learning (DAG structure),
- Parameter learning (for local probability distribution).

Situations

- Known structure and complete data.
- Unknown structure and complete data.
- Known structure and incomplete data.
- Unknown structure and incomplete data.

Parameter Learning

 Task: Given a network structure, estimate the parameters of the model from data.



P(A)					
н	L				
0.99	0.01				

P(B)					
H L					
0.93	0.07				

P(C A, B)						
(A, B)	L					
(H, H)	0.4	0.6				
(H, L)	0.2	0.8				
(L, H)	0.3	0.7				
(L, L)	0.8	0.2				

P(D B)						
В	Н	L				
Н	0.9	0.1				
L	0.1	0.9				

Key point: independence of parameter estimation

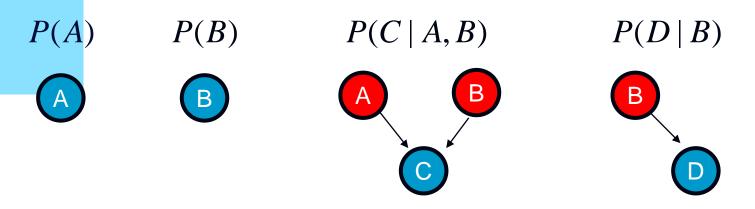
- $D = \{\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_M\}$, where $\mathbf{s}_i = (a_i, b_i, c_i, d_i)$ is an instance of a random vector variable $\mathbf{S} = (A, B, C, D)$.
- Assumption: samples s_i are <u>independent and identically</u> <u>distributed (i.i.d.)</u>.

$$L_{G}(\Theta; D) = P_{G}(D | \Theta) = \prod_{i=1}^{M} P_{G}(\mathbf{s}_{i} | \Theta)$$

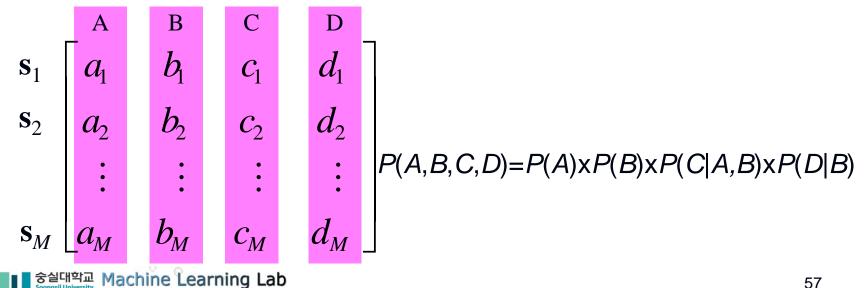
$$= \prod_{i=1}^{M} [P_{G}(a_{i} | \Theta) P_{G}(b_{i} | \Theta) P_{G}(c_{i} | a_{i}, b_{i}, \Theta) P_{G}(d_{i} | b_{i}, \Theta)]$$

$$= \left(\prod_{i=1}^{M} P_{G}(a_{i} | \Theta)\right) \left(\prod_{i=1}^{M} P_{G}(b_{i} | \Theta)\right) \left(\prod_{i=1}^{M} P_{G}(c_{i} | a_{i}, b_{i}, \Theta)\right) \left(\prod_{i=1}^{M} P_{G}(d_{i} | b_{i}, \Theta)\right)$$

Independent parameter estimation for each node (variable)



- One can estimate the parameters for P(A), P(B), P(C|A, B), and P(D|B) in an independent manner.
 - If A, B, C, and D are all binary-valued, the number of parameters are reduced from $15(2^{4}-1)$ to 8(1+1+4+2).



Methods for Parameter Estimation

- Maximum Likelihood Estimation
 - Choose the value of Θ which maximizes the likelihood for the observed data D.

$$\hat{\Theta} = \arg \max_{\Theta} L_{G}(\Theta; D) = \arg \max_{\Theta} P(D \mid \Theta)$$

Bayesian Estimation

- Represent uncertainty about parameters using a probability distribution over Θ.
- Θ is also a random variable rather than a parameter value.

$$P(\Theta \mid D) = \frac{P(\Theta)P(D \mid \Theta)}{P(D)} \propto P(\Theta)P(D \mid \Theta)$$
posterior prior likelihood

Bayes Rule, MAP and ML

Bayes' rule

 $P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$

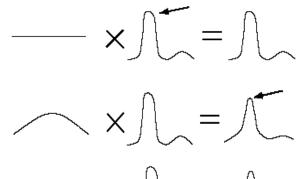
h: hypothesis (models or parameters) *D*: data

• <u>ML</u> (maximum likelihood) estimation $h^* = \arg \max_h P(D \mid h)$

• <u>MAP</u> (maximum a posteriori) estimation $h^* = \arg \max_h P(h \mid D)$

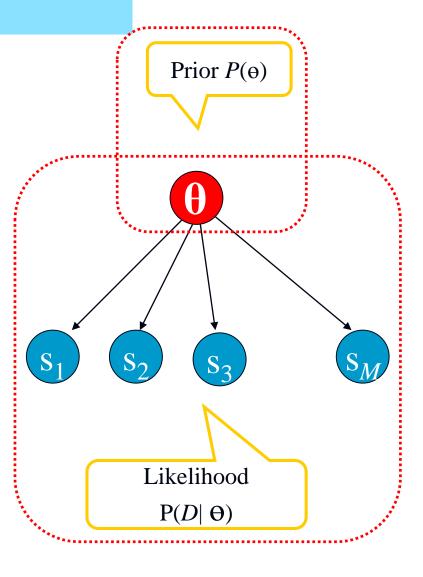
Bayesian Learning

Not a point estimate, but the posterior distribution
 P(h | D)



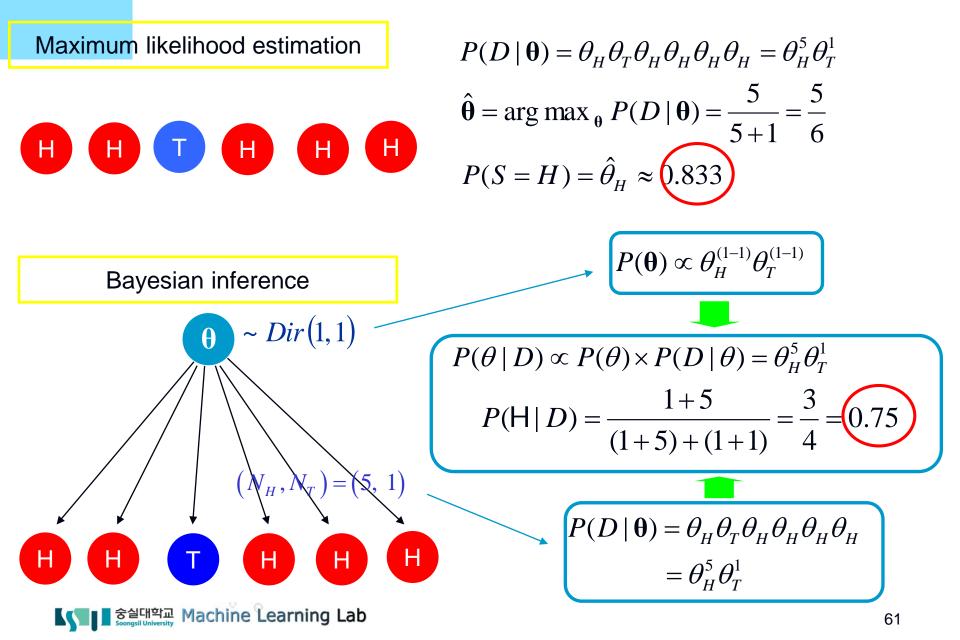
From NIPS'99 tutorial by Z. Ghahramani

Bayesian estimation (for multinomial distribution)



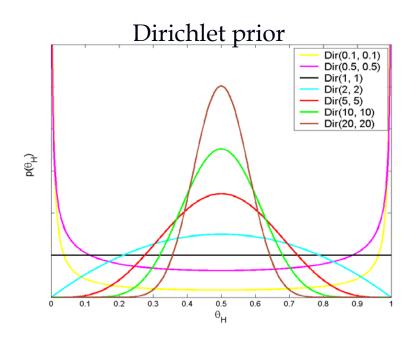
Prior knowledge or pseudo counts $\theta \sim Dir(\alpha_1, \alpha_2, \dots, \alpha_K)$ $P(\theta) \propto \prod_{k \in \mathbb{N}} \theta_{k}^{\alpha_{k}-1} \qquad \text{Sufficient statistics}$ $P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$ $\propto \prod_{k} \theta_{k}^{\alpha_{k}+N_{k}-1}$ $P(S_{M+1} = k \mid D) = \int P(k \mid \boldsymbol{\theta}) P(\boldsymbol{\theta} \mid D) d\boldsymbol{\theta}$ $= \int \theta_k P(\mathbf{\theta} \mid D) d\mathbf{\theta}$ $=E_{P(\boldsymbol{\theta}|D)}[\boldsymbol{\theta}_{k}]=\frac{\boldsymbol{\alpha}_{k}+\boldsymbol{N}_{k}}{\sum_{i}(\boldsymbol{\alpha}_{i}+\boldsymbol{N}_{i})}$ Smoothed version of MLE

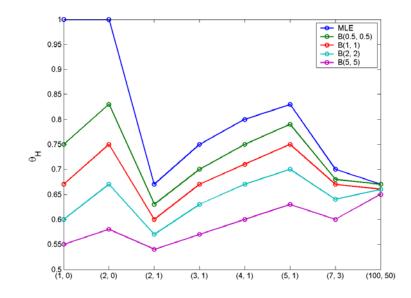
An Example: Coin toss



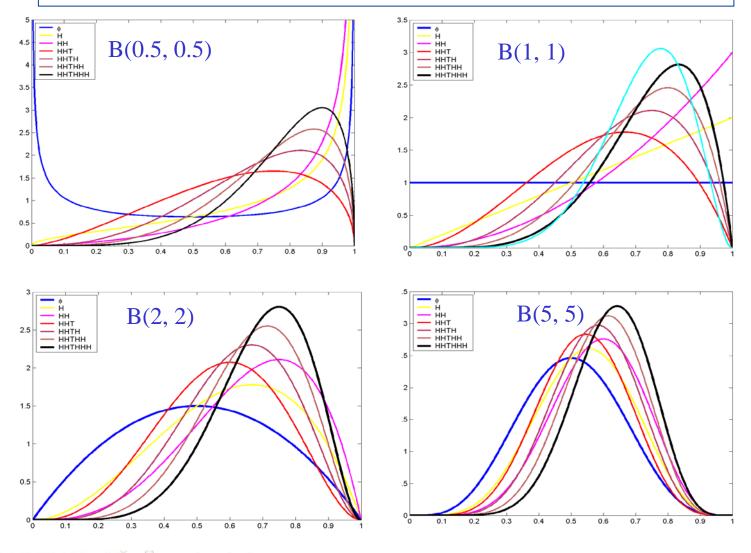
P(H)

	н	нн	ннт	ннтн	ннтнн	ннтнн Н	ННТНН НТТНН	(100, 50)
MLE	1.00	1.00	0.67	0.75	0.80	0.83	0.70	0.67
B(0.5, 0.5)	0.75	0.83	0.63	0.70	0.75	0.79	0.68	0.67
B(1, 1)	0.67	0.75	0.60	0.67	0.71	0.75	0.67	0.66
B(2, 2)	0.60	0.67	0.57	0.63	0.67	0.70	0.64	0.66
B(5, 5)	0.55	0.58	0.54	0.57	0.60	0.63	0.60	0.65





Variation of posterior distribution for the parameter

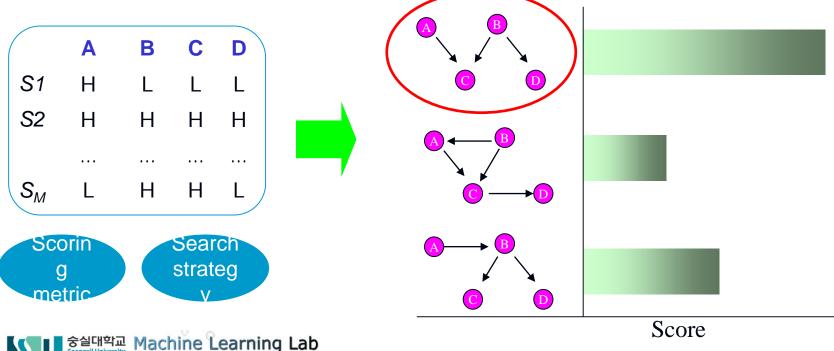


Structure Learning

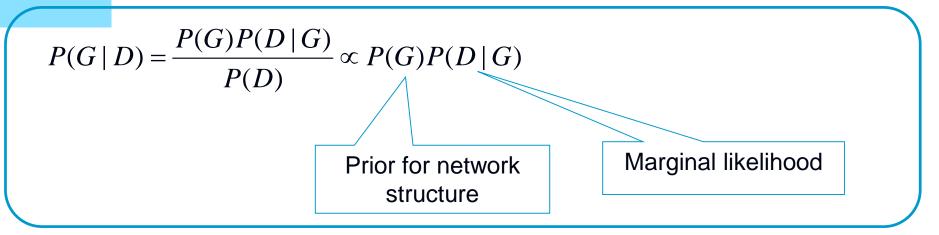
 Task: Given a data set, search a most plausible network structure underlying the generation of the data set.

Metric-based approach

Use a scoring metric to measure how well a particular structure fits the observed set of cases.



Scoring Metric



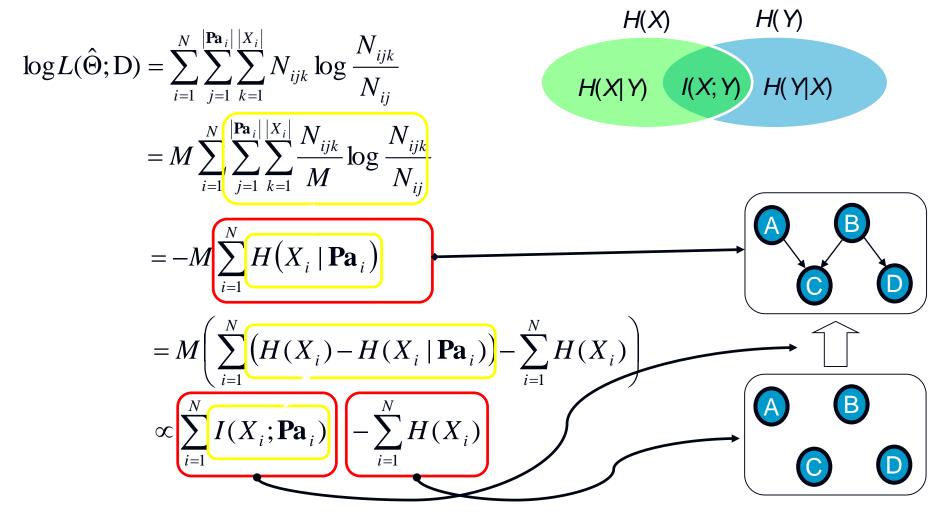
Likelihood Score

 $Score(G; D) = \log P(D | G, \Theta_{MLE}) \propto \sum_{i=1}^{N} I(X_i; \mathbf{Pa}_i) - \sum_{i=1}^{N} H(X_i)$

- Nodes of high mutual information (dependency) with their parents get higher score.
- Since, I(X; Y) ≤ I(X; {Y, Z}), the fully connected network is obtained in an unrestricted case.
- Prone to overfitting.

중실대학교 Machine Learning Lab

Likelihood Score in Relation with Information Theory



Bayesian Score

 Consider the uncertainty in parameter estimation in Bayesian network

$$Score(G; D) = P(G) \int P(D \mid G, \Theta) P(\Theta \mid G) d\Theta$$

 Assuming a complete data and parameter independence, the marginal likelihood can be rewritten as

$$P(D | G) = \prod_{i=1}^{N} \left[\int P(D(X_i; \mathbf{Pa}(X_i)) | G, \theta_i) P(\theta_i | G) d\theta_i \right]$$

Marginal likelihood for each pair of
 $(X_i; \mathbf{Pa}(X_i))$

Bayesian Dirichlet Score

For a multinomial case, if we assume a Dirichlet prior for each parameter (Heckerman, 1995),

$$\int P(D(X_i; \mathbf{Pa}(X_i)) | G, \mathbf{\theta}_i) P(\mathbf{\theta}_i | G) d\mathbf{\theta}_i = \prod_{j=1}^{|\mathbf{Pa}_i|} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{|X_i|} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

1 77

$$\begin{aligned} \theta_{ij} &\sim Dir\left(\alpha_{ij1}, \alpha_{ij2}, \dots, \alpha_{ij|X_i|}\right) & \alpha_{ij} = \sum_{k=1}^{|X_i|} \alpha_{ijk} \\ N_{ijk} &= \# \text{ of } \left(X_i = x_i^k, \mathbf{Pa}(X_i) = pa_i^j\right) & N_{ij} = \sum_{k=1}^{|X_i|} N_{ijk} \\ \Gamma(n+1) &= n\Gamma(n) = \dots = n! \\ \Gamma(1) &= 1 & \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \end{aligned}$$

중실대학교 Machine Learning Lab

Bayesian Dirichlet Score (cont'd)

 $\theta \sim Dir(\alpha_H, \alpha_T) \qquad \alpha = \alpha_H + \alpha_T$

 $P(H \mid \phi) = \frac{\alpha_H}{\alpha_H + \alpha_T}$ $P(H \mid H) \frac{(\alpha_H + 1)}{(\alpha_H + 1) + \alpha_T}$ $P(T \mid HH) = \frac{\alpha_T}{(\alpha_H + 2) + \alpha_T}$ $P(H | HHT) = \frac{(\alpha_H + 2)}{(\alpha_H + 2) + (\alpha_H + 1)}$

Η

Η

Н

$$\frac{\Gamma(\alpha_{H}+3)}{\Gamma(\alpha_{H})} \qquad \frac{\Gamma(\alpha_{T}+1)}{\Gamma(\alpha_{T})}$$

$$(\alpha_{H}\times(\alpha_{H}+1)\times\cdots(\alpha_{H}+2))\times\alpha_{T}$$

$$(\alpha\times(\alpha+1)\times\cdots(\alpha+3)) \qquad \Gamma(\alpha+4)$$

$$\Gamma(\alpha)$$

$$\Gamma(\alpha)$$

$$\Gamma(\alpha)$$

$$\Gamma(\alpha+4)$$

$$\Gamma(\alpha_{H}+3)\times\Gamma(\alpha_{T}+1)$$

$$\Gamma(\alpha_{T})$$

Bayesian Dirichlet Score (cont'd)

$$P(D \mid G) = \prod_{i=1}^{N} \left[\int P(D(X_i; \mathbf{Pa}(X_i)) \mid G, \mathbf{\theta}_i) P(\mathbf{\theta}_i \mid G) d\mathbf{\theta}_i \right]$$
$$= \prod_{i=1}^{N} \prod_{j=1}^{|\mathbf{Pa}_i|} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{|X_i|} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

 log P(D|G) in Bayesian score is asymptotically equivalent to BIC and minus the MDL criterion.

$$\log P(D \mid G) \approx BIC(G; D) = \log P(D \mid \hat{\Theta}, G) - \frac{\dim(G)}{2} \log M$$
$$\dim(G) = \# \text{ of parameters} \quad \text{in } G$$

Structure Search

- Given a data set, a score metric, and a set of possible structures,
 - Find the network structure with maximal score.
 - Discrete optimization
- One can utilize the property of independent score for each pair of $(X_i, \mathbf{Pa}(X_i))$.

$$P(D \mid G) = \prod_{i=1}^{N} P(D(X_i; \mathbf{Pa}(X_i)) \mid G)$$

Score(G; D) = log $P(D \mid G) = \sum_{i=1}^{N} Score(X_i; \mathbf{Pa}(X_i))$

Tree-Structured Networks

Definition: Each node has at most one parent.

An effective search algorithm exists.

Improvement over empty network

Score for empty network

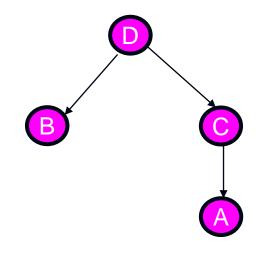
$$Score(G \mid D) = \sum_{i} Score(X_i \mid Pa_i) = \sum_{i} \left[Score(X_i \mid Pa_i) - Score(X_i) \right] + \sum_{i} Score(X_i)$$

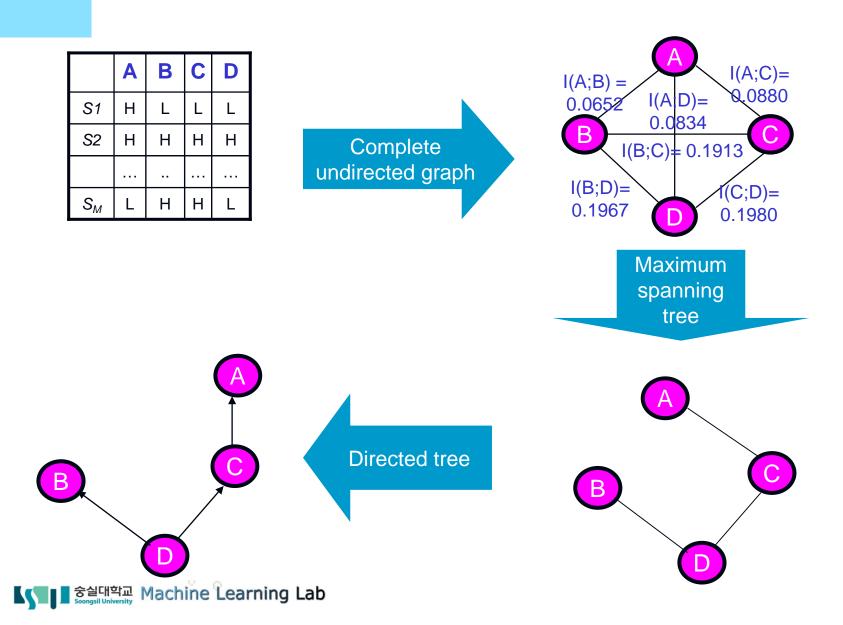
Chow and Liu (1968)

Construct the <u>undirected complete graph</u> with the weights of edge $E(X_i, X_j)$ being $I(X_i; X_j)$.

Build a maximum weighted spanning tree.

Transform to <u>a directed tree</u> with an arbitrary root node.



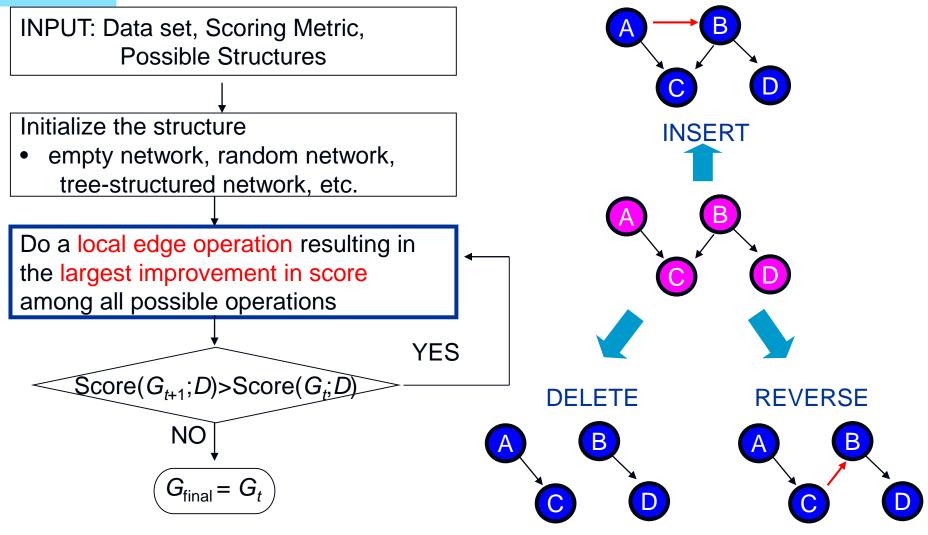


Search Strategies for General Bayesian Networks

- With more than one parents per node → NP-hard (Chickering *et al.*, 1996)
 - Heuristic search methods are usually employed.
 - Greedy hill-climbing (local search)
 - Greedy hill-climbing with random restart
 - Simulated annealing
 - Tabu search

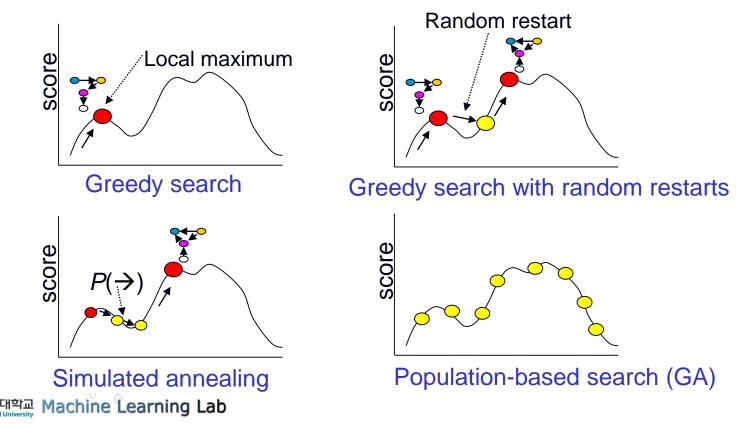
...

Greedy Local Search Algorithm



Enhanced Search

- Greedy local search can get stuck in local maxima or plateaux.
- Standard heuristics to escape the two includes
 - Search with random restarts, simulated annealing, tabu search.
- Genetic algorithm: a population-based search.



- Basic Concepts of Bayesian Networks
- Inference in Bayesian Networks
- Learning Bayesian Networks
 - Parametric Learning
 - Structural Learning
- Conclusion

Conclusion

- Bayesian networks provide an efficient/effective framework for organizing the body of knowledge by encoding the probabilistic relationships among variables of interest.
 - Graph theory + probability theory: DAG + local probability distribution.
 - Conditional independence and conditional probability are keystones.
 - A compact way to express complex systems by simpler probabilistic modules and thus a natural framework for dealing with complexity and uncertainty.
- Two problems in the learning of Bayesian networks from data
 - Parameter estimation: MLE, MAP, Bayesian estimation
 - Structural learning: tree-structured network, heuristic search for general Bayesian network.

참고 문헌

■ 베이즈망 소개

 F. V. Jensen and T. D. Nielson, Bayesian Networks and Decision Graphs, 2nd Edition, Springer, 2007. (2장)

베이즈망 추론

 B. J. Frey, Graphical Models for Machine Learning and Digital Communication, MIT Press, 1998. (2장)

■ 베이즈망 학습

 D. Heckerman, "A Tutorial on Learning with Bayesian Networks," Learning in Graphical Models, M. I. Jordan (Ed.), pp. 301-354, Kluwer Academic Publishers, 1998.

Bayesian Network Software Packages

Bayes Net Toolbox (by Kevin Murphy)

- <u>https://code.google.com/p/bnt/</u>
- A variety of algorithms for learning and inference in graphical models (written in MATLAB).

WEKA

- http://www.cs.waikato.ac.nz/~ml/weka/
- Bayesian network learning and classification modules are included among a collection of machine learning algorithms (written in JAVA).
- A number of Bayesian network packages in R
 - <u>http://www.bnlearn.com/</u>
 - bnlearn, gRbase, and others.
- A detailed list and comparison are referred to
 - http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html

Thank You

Source: Writing and reading a book with DNA, IEEE Spectrum (August 2012)

