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Introduction

@ Sets of data points assumed to be independent and identically
distributed (i.i.d.) in many popular models
@ i.i.d. is not a reasonable assumption for sequential data
e Measurements of time series, daily values of a currency exchange rate,
acoustic features in speech recognition
e Sequence of nucleotide base pairs along a strand of DNA, sequence of
characters in an English sentence
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Markov model

@ Markov model:

N
p()(]-7 .« e 7XN) = Hp(Xn’X17 .« e 7Xn—1)

n=1

@ Each of the conditional distributions is independent of all previous
observations except N most recent
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The first-order Markov Chain

@ Homogeneous Markov chain

X1. X2. X3. X4.

@ Joint distribution for a sequence of N observations

N
p(Xla T 7XN) = P(Xl) H p(Xn’anl)
n=2

@ From the d-seperation property

p(Xn|X17 T 7Xn—1) = p(Xn|Xn—1)

Given x,_1, Xp is conditionally independent of x1, -+ -, X,_1.
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D-separation (Pearl, 1988)

Given a directed acyclic graph, two variables a, b and a set of variables C.
Any path from a to b is said to be blocked, if it includes a node such that
either

@ arrows on the path meet either head-to-tail or tail-to-tail at the node
in the C (inclusion),

a b

@ the arrows meet head-to-head at the node, and neither the node, nor

any of its descendants, is in the set C (exclusion)
a b

If every path from a to b is blocked, then, a is said to be d-separated from
b by C, and a is conditionally independent of b given C.
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A higher-order Markov chain

The second-order Markov chain

X1 X2 X3 X4

A higher-order Markov chain
@ Observations are discrete variables having K states

o first-order: K — 1 parameters for each K states — K(K — 1)
parameters

o Mth order: KM(K — 1) parameters
E.g., p(x|y, z): a second order MC with binary variables (K=2)
p(x = 0]y=0,z=0), p(x = 0]y=0, z=1), p(x = 0]y=1,z=0), p(x = 0|y=1,z=1)
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Hidden Markov models (HMMs)

Zn—1 Zn Zn+1

@ z, latent variables (discrete) (assumption: z,y1 1L z,-1|z, )
@ Xx, observed variables

@ The joint distribution of the state space model

N N
p(x,  xn, 21, 2y) = p(z1) [H p(z,,|z,,1)] H P(xnl|zn)
n=2 n=1

@ The hidden variables make possible to represent a mixture model.
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Hidden Markov Models (HMMs)

@ Transition probability
- The probability of z, has the kth
value when z,_; has the jth value. Transtion diagram

Let's denote Aé‘\
AQI
A = p(znk = 1)2a—1j = 1), Dm
Asz | | A2s k= JD:DAU
OSAjkgland ZkAijI. k:y
- Latent variables are K-dimensional D,_%

binary variables.

zn =A{2Zn1,2Zn2, ", Znk |, €81 . .
{6’ 1. " 70i when Z'; Y Unfolded Lattice diagram

Ass

K K
P(Z,,|Zn71, A) = H HA;:—LJ-Z,,,(

k=1j=1

K

plarlr) = [ =3

k=1
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Hidden Markov Models (HMMs)
Three hidden models

1

@ Emission probability (observations)
Xn‘zna ¢) H p ‘(bk an 05 [ @
Z’)’L ke

Samples when p of transition is 5%

1

05

@k is the parameter of the model. 0
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HMM applications

Speech recognition
Natural language modeling
Analysis of biological sequences
On-line handwriting recognition (Handwritten digits)
o Left-to-right architecture: Ay of A to zero if j > k.
e On-line data: each digit represented by the trajectory of the pen as a
function of time

.

2

-

2

=2

2

n—2 n—1 n Tt

Bottom: synthetic digits from a left-to-

right HMM. 16 sequences of 16 stroke

(angle) directions.
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Maximum likelihood for the HMM

@ We have observed a data set X = x1,--- , xn,
@ Determine the parameters of an HMM 6 =7, A, ¢
@ The likelihood function is p(X|0) = >, p(X, Z|0)

@ The maximum likelihood estimate is argmaxy P(X|0)
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Maximizing the likelihood function: EM

Expectation maximization algorithm (EM)
o Initial selection for the model parameters: §°/

o E step:

o Posterior distribution of the latent vars: p(Z|X,6°9)
o A log likelihood function: p(X, Z|0)

Q(6,6°) = Ep(z)x.004)[In p(X, Z|6)]

=" p(Z|X,6°)In p(X, Z|6)
V4

Jaesik Choi(UNIST) Learning and Inference with Dynamical Systems



Maximizing the likelihood function: EM

E step:

N K K
Q(6,6°) :Z Zlk)|n7Tk+ZZZ§ Zn_1,j, Znk)In Aji
k=1

k=1 n=2 j=1

J/

-~

log of initial log of transition

N
+ Z Z V(an |n p(Xn‘¢k)
n=1k

log of emission

@ The marginal posterior distribution of a latent variable « and the joint
posterior distribution of two successive latent variables £

¥(z) = p(zalX,6°9)
é-(zn—l')zn) - p(Zn—lvzn|X790ld)
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Maximizing the likelihood function: EM

M step:

o Maximize Q(6,0°) with respect to parameters § = {m, A, ¢}, treat
v(z,) and &(z,_1, z,) as constant. By using Lagrange multipliers?

o ’V(Zlk)
Tk = &SK /o~
Zj:l ’V(le)
A, — Znsz E(Zn—lJaan)
vk —

Zﬁl Z,’Y:z f(Zn—l,j, Zn/)

That is, the marginals become the parameter of the categorical
(multinoulli) distribution.

2http ://cs.berkeley.edu/~stephentu/writeups/hmm-baum-welch-derivation.pdf
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Lagrangian of Q(6,6°9)

Lagrangian:
K
5(9 GOId) HOld (Z Tk — 1) Z Aj <Z Ajk — 1)
j=1 k=1
K
- Z Ap(xal)) (Z p(xnldj) — 1)
j:]. Xn
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Lagrangian of Q(6,6°9)

Partial derivative (set to 0

~—

aL(6, 0°)

E(Zn—l,ja znk)
— AA =0
0Ajk Aj \A;J/

O of lagrangian term

M=

||
N

n

~~

0 of log of transition

ZnN:Q f(znfl,jv an)
A

J

aL(6,6°) K

ad LA | WP
O kzz:l K 0

K N
= A, = Z Zf(zn—lJ, Znk)

k=1 n=2
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Maximizing the likelihood function: EM

M step:

@ Parameters ¢, independent for Gaussian emission densities

p(x|éx) = N (x|, Xk)

Zr,:lzl ’Y(znk)xn
Z,’Y:l V(an)
N (k) (e — k) (e — k)T
2. Sy Y (znk)

ko =
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The Forward-Backward algorithm

Z1 Zp—1 Zn Zp+1

X1 X2

@ Two-stage message passing algorithm to compute marginals v and &
@ Here, we focus on alpha-beta algorithm

Oé(Zn) = (X17 cr 5 Xn, Zn) (1334)
(Xn+1," s XN|2Zn) (13.35)
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Conditional Independence Properties in HMM

Use X ;) = (xi,- -+ ,x;) as a simplied notation,

P(X20) = p(X{1.n1|Z0)P(Xn 11,020 (13.24)
X1, and X{,11,n are independent given z,

(X[l n— 1]|Xn, zy) = P(X[l n— 1]|Zn)
P(X[l n— 1]|Zn 1,7n) = P(X[l n— 1]’Zn 1)
P(Xnt 1,205 Zn+1) = P(X(ng1,n|Z0+1)

)
) =

P(X(n+2,n]|Zn+1)
P(X(1,n—-1)12n-1,20) P(Xn| 20— 1,20) P(X[n1,M) | 20— 1,20)

= p(X[1,n-1)12n-1)P(xn|Zn) P(X[ns1,n712n)
PN+ X1, )5 Zvr1) = P(Xt1]Znr1)

p(zn+1lzn, X) = p(znt1lzn) (13.31)

(X[n+2 N] |zn+17 Xn+1
(X|Zn 1,Zn
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The Forward Recursion

a(zn-1,1) a(zn,1)

Forward recursion for o(z,)

a(zn) (X[l,n] ‘Zn)p(zn) = p(x,, ’Zn)p(X[l,n—l] ’Zn)p(zn)

=p
= p(Xn|Zn)p(X[1,n—1]azn) = p(Xn’Zn)ZP(X[l,n—l], Zn—1, Zn)

Zpn—1
= p(xn|zn) Z p(X[l,n—l] |Zn—1)P(2n|2n-1)P(Zn-1)
Zp—1
= p(xnl|zn) Z a(zp—1)p(2n|Zn-1) (13.36)
Zp—1
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The Backward Recursion

\p(xn |2n+1.1)
B(znt1,2)

Backward recursion for 3(z,) K 2DA13

\P(Xn|2n+1.2)
ﬁ(zn+1,3)

-0

" nt 1\P(Xn|2n+1.3)

B(zn) = Z B(zn+1)P(Xn+1|2n+1)P(2n+1]2n)

Zny1

Blzn) = 1
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The Backward Recursion - Derivation

B(zn) = P(X[n+1,N]|Zn)
= ZP(X[n+1,N]aZn+1|Zn)

Zn+1

= p(Xins1,m20> 2041)P(Zn11120)

Zn+1

= Z P(Xin+1,M12n+1)P(Zn+1|2n)

Zn+1

= Z P(X[n+2,N] |Zn+1)P(Xn+1]2n41) P(Zn41|2n).

Zn+1

By using the definition of 5(zp4+1),

= Z/B(Zn+1)P(Xn+1|Zn+1)P(Zn+1|Zn)- (13.38)

Zny1
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Evaluation of £(z,-1, z,)

@ Using Bayes' theorem

p(X, zn—1, zn)
p(X)
p(X|zn—1,2n)p(zn-1, Zn)
p(X)

p(X[Ln—l] ‘Zn—l)p(xn|zn)p(X[n+17N] |Zn)p(zn ‘Zn—l)p(zn—l)
p(X)

P(X1,n-1)12n—1)P(2n—1) P(Xn|2n) P(Xn 41,3 |20) P(2n| Z0—1)
p(X)

(zn—1)P(xn|2n) 3(2n) P(2n| Zn-1)

p(X)

g(zn—lazn) = p(z,,_l,z,,]X) =
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The sum-product algorithm

@ Solve the problem of finding local marginals for the hidden variables ~

and &.
@ Can be used instead of forward-backward algorithm
X zy Zn—1 ’l//'n Zn
g1
@ Results in
a(zn)5(zn)
Zn) = —— 13.54
W) = (13.54)
a(zn—l)p(xn’Zn)p(zn‘zn—l)ﬁ(zn)
&(zp_1,2n) = 13.43
(201, 2) ) (1343)
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Scaling factors

@ Used to solve forward-backward algorithm

a(zn) = p(xn|zn) Z (zp-1)p(2n|zn-1) (13.36)

Zn—1

@ Probabilities p(x,|z,) and p(z,|z,—1) are often significantly less than
unity, thus values a(z,) go to zero exponentially.

@ Re-scaled equations

aan) = e X = o (13.55)
A _ B(zn)
Plan) = P(Xnt1, - 5 Xn|xt, o5 Xn)
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Extension | - Autoregressive HMM

o Longer-range effects could be included by adding extra link

Zp—1 Zy, Zp4+1
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Extension Il - Input-ouput HMM

@ Input and output pairs could be modeled (where u, is an input value).

Up—1 U, Up41

Jaesik Choi(UNIST) Learning and Inference with Dynamical Systems



Extensions Il - Factorial HMM

@ The distribution of the observed variable at a given time step is
conditional on the states of latent variables.

2 2
Z;—)l z{?) Z£L4)-1
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Extensions Il - Factorial HMM

1)

o Latent variables (e.g., z,”’; and z,(:r)l) are not d-seperated (connected
by a path given observations).

2 2
Z;—) z{?) Z;-‘t)-l
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Linear Dynamical Systems (LDSs)

A Linear-Gaussian model
@ The general form of algorithms for the LDS are the same as for the
HMM

@ Continuous latent variables
@ Both observed x, and latent z, variables Gaussian
e Joint distribution over all variables, marginals and conditionals are

Gaussian
e The sequence of individually most probable latent variable values is the

same as the most probable latent sequence
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Linear Dynamical Systems

@ Transition and emission probabilities

p(zn|zn-1) = N(zn|Azp-1,T) (13.75)
p(xn|zn) = N (xn|Czn, X) (13.76)

@ The initial latent variable
p(z1) = N(z1|po, Vo) (13.77)

@ The parameters § = {A, I, C, X, g, Vo} determined using maximum
likelihood through EM
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Inference with Linear Dynamical Systems

@ Find the marginal distributions for the latent variables conditional on
the observation sequence

e Given the parameters § = {A,I', C, X, ug, Vo }, predict the next latent
state z,+1 and next observation x,1

@ Sum-product algorithm

o Kalman filter (forward-recursion, o message)
o Kalman smoother (backward-recursion, 8 message)

blue: true position green: noisy measurements red: inferred posterior
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Kalman filtering: Model

Transition model and observation model, params 0 = {A,T, C, ¥, ug, Po},

p(znlzn-1) = N(za|Azp—1,T) (13,75)
p(xnlzn) = N(xn| Czp, X) (13.76)
Initial value:
p(z1) = N(z1|po, Po) (13.77)
Linear equations expressions:
71 73 7o 1 Zn Z
X, X9
Zn =Azp-1+ W, Xp=Czp+Vn, 21 =po +u (1)
with noise terms:
w ~ N(w|0,T), v ~N(v]|0,X), u~N(ul0,Pp). (2)
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Kalman filtering: Derivation

Normalized marginal distributions:

a(zn) = N(2alpen, Vi) (13.84)

Recursion equations:

cné(zy) = p(x,,|z,,)/6z(z,,1)p(z,,|z,,1)dz,,1 (13.85)

N (zn|tin, Vi) = N (xn| Czp, Z)/N(z,,_l\,u,,_l, Vp—1)N(zn|Azp—1,T)dzn—1

= N (xn| Czpn, )N (zn|Aptn—1, Pn—1) (13.87)

where P,_1 = AV, _1AT +T.
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Kalman filtering: Derivation

Cn-/\/—(zn|#n7 Vn) = N(Xn|Czn7 z)-/\/’(Zn|A,UJn717 Pnfl)

where P,_1 = AV,_1AT +T.
Solve the above equations,

tn = Apin—1 + Kn(xn — CAln—1) (13.89)
Vo= (I — KnC)Pn_1 (13.90)
cn = N (xn| CAptn—1, CPr_1CT 4+ X). (13.91)

where K, is the Kalman gain matrix:
Kp=Pr1CT(CPp_1CT + %)t

[Important| the exponent of a Gaussian distribution is represented by

1
§XTZ_1X +xTY¥ 7 4 constant = —§(X )T Y x—p)  (2.71)
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Kalman filtering: lllustration

Before filtering

p(zn—llx[l,nfl])
Diffusion by transition

P(zn| X[1,n-11) = P(2n|2n-1)P(2n-1|X[1,n-1)) P
Sifted and Narrowed by an observation

P(zn| X1,n)) = P(XalZn) P(Zn| X(1,n-1)

Jaesik Choi(UNIST)
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Learning in Linear Dynamical Systems

@ Determine 8 = {A,T, C, X, uo, Vo} using maximum likelihood
@ Expectation maximization

o Estep: Q(6,0°¢) — Ezjguu[ln p(X, Z|6)]

o M step: Maximize with respect to the components of ¢
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Extensions of LDSs

@ The marginal distribution of the observed variables is Gaussian
use Gaussian mixture as the initial distribution for z;

@ Make Gaussian approximation by linearizing around the mean of the
predicted distribution

Extended Kalman filter

@ Combining the HMM with a set of linear dynamical systems
Switching state space model
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Particle filters

Sampling methods

P(2n|Xn)

Plzn1Xn)

P(Xnt1l2n+1)

P(zn41|Xn+1) >

@ Needed for dynamical systems which do not have a linear-Gaussian

@ Sampling-importance-resampling formalism
a sequential Monte Carlo as the particle filter

@ Particle filter algorithm:
At time step n
e obtained a set of samples and weights
e observe x,11
o evaluate samples and weights for time step n+ 1

Jaesik Choi(UNIST) Learning and Inference with Dynamical Systems



Recent Advances in Dynamical Systems



Nonparametric Regression by Gaussian Processes

*  Automatic Bayesian Covariance Discovery (ABCD, The Automatic Statistician)
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Nonparametric Regression by Gaussian Processes

*  Automatic Bayesian Covariance Discovery (ABCD, The Automatic Statistician)
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Nonparametric Regression by Gaussian Processes

*  Automatic Bayesian Covariance Discovery (ABCD, The Automatic Statistician)

2 7 s
o —— 8 H °
= 8 o 6 ° : °
w @ ! ° H
& !
= : H ° °
[ °
o o
2 3
g o | — — °
2o o 8 o 8 °
-] ° ?
n @ o 8 8
° o 5 b $ H i
° ° ? : ; i H i
e | s —6— s — - & 8
T T T T T T T T T
ABCD ABCD Spectral  Trend, cyclical Bayesian E ch - Squared Linear
accuracy interpretability ] kernels irregular MKL ureqa angepoints Exponential  regression

I3 raw regression datasets

unisT



35

30

25

20

Raw data

unisT

The 911 attacks

Relational Automatic Bayesian Covariance Discovery with Multiple datasets
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Nonparametric Regression by Gaussian Processes

An automatic report for the dataset : GE
Relational version

The Automatic Statist

2.6 Component 6 : A constant. This function applies from 12 Sep 2001 until 15 Sep 2001
Abstract P e ! !
. This component is constant. This component applies from 12 Sep 2001 until 15 Sep 2001.

This report was produced by the Automatic Bayesian B R R
(ABCD) algorithm, This component explains 100.0% of the residual variance; this increases the total variance explained
) = from 95.2% to 100.0%. The addition of this component incre the cross validated MAE by
0.67% from 0.87 to 0.87. This component explains residual variance but does not improve MAE
which suggests that this component describes very short term patterns, uncorrelated noise or is an
artefact of the model or search procedure

1 Executive summary

The raw data and full mode] posterior with extrapolations are showr
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Figure 1: Raw data (left) and model posterior with extrapolation (right)




Recurrent Convolutional Neural Network

for EEG analysis
I’I'II; t=1
[ L7 0

RNN x(6) = o (Winu(t) + Wx(t - 1)) + b)

RC Lz (® = o (win) w0 + (W TXED (e = 1) + by )

One chunk: Data: 3584,32

Grasp-and-Lift EEG Detection

unisT



Max poolin
Layer type Size Output shape
. Convolutional 256 1x9 filters (64, 256, 1, 3584)
Max POOIIng Max pooling Pool size 4, stride 4 (64, 256, 1, 896)
_ RCL 256 1x1 feed-forward filters, 256 1x9 filters, 3 iterations (64, 256, 1, 896)
Max pooling Pool size 4, stride 4 (64, 256, 1, 224)
Max poolin RCL 256 1x1 feed-forward filters, 256 1x9 filters, 3 iterations (64, 256, 1, 224)
— Max pooling Pool size 4, stride 4 (64, 256, 1, 56)
RCL 256 1x1 feed-forward filters, 256 1x9 filters, 3 iterations (64, 256, 1, 56)
Max pooling Pool size 4, stride 4 (64, 256, 1, 14)
RCL 256 1x1 feed-forward filters, 256 1x9 filters, 3 iterations (64,256, 1, 14)
Max pooling Pool size 2, stride 2 (64,256,1,7)
Fully connected 1792x6 (64, 8)

97.687%

unisT




Thank you!
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