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Introduction

x1 x2 x3 x4

Sets of data points assumed to be independent and identically
distributed (i.i.d.) in many popular models

i.i.d. is not a reasonable assumption for sequential data

Measurements of time series, daily values of a currency exchange rate,
acoustic features in speech recognition
Sequence of nucleotide base pairs along a strand of DNA, sequence of
characters in an English sentence
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Markov model

Markov model:

p(x1, · · · , xN) =
N∏

n=1

p(xn|x1, · · · , xn−1)

Each of the conditional distributions is independent of all previous
observations except N most recent
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The first-order Markov Chain

Homogeneous Markov chain

x1 x2 x3 x4

Joint distribution for a sequence of N observations

p(x1, · · · , xN) = p(x1)
N∏

n=2

p(xn|xn−1)

From the d-seperation property

p(xn|x1, · · · , xn−1) = p(xn|xn−1)

Given xn−1, xn is conditionally independent of x1, · · · , xn−1.
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D-separation (Pearl, 1988)

Given a directed acyclic graph, two variables a, b and a set of variables C .
Any path from a to b is said to be blocked, if it includes a node such that
either

arrows on the path meet either head-to-tail or tail-to-tail at the node
in the C (inclusion),

a c b

c

a b

the arrows meet head-to-head at the node, and neither the node, nor
any of its descendants, is in the set C (exclusion)

c

a b

If every path from a to b is blocked, then, a is said to be d-separated from
b by C , and a is conditionally independent of b given C .
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A higher-order Markov chain

The second-order Markov chain

x1 x2 x3 x4

A higher-order Markov chain

Observations are discrete variables having K states

first-order: K − 1 parameters for each K states → K (K − 1)
parameters

Mth order: KM(K − 1) parameters
E.g., p(x |y , z): a second order MC with binary variables (K=2)

p(x = 0|y=0, z=0), p(x = 0|y=0, z=1), p(x = 0|y=1, z=0), p(x = 0|y=1, z=1)
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Hidden Markov models (HMMs)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

zn latent variables (discrete) (assumption: zn+1 ⊥⊥ zn−1|zn )

xn observed variables

The joint distribution of the state space model

p(x1, · · · , xN , z1, · · · , zN) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn)

The hidden variables make possible to represent a mixture model.
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Hidden Markov Models (HMMs)

Transition probability
- The probability of zn has the kth
value when zn−1 has the jth value.
Let’s denote

Ajk ≡ p(znk = 1|zn−1,j = 1),

0 ≤ Ajk ≤ 1 and
∑

k Ajk = 1.
- Latent variables are K -dimensional
binary variables.
zn = {zn1, zn2, · · · , znK}, e.g.,
{0, 1, · · · , 0} when zn = 2.

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

A
zn−1,jznk
jk

p(z1|π) =
K∏

k=1

πz1k
k

Transtion diagram

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

Unfolded Lattice diagram

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33
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Hidden Markov Models (HMMs)

Emission probability (observations)

p(xn|zn, φ) =
K∏

k=1

p(xn|φk)znk

φk is the parameter of the model.

Three hidden models

k = 1

k = 2

k = 3

0 0.5 1
0

0.5

1

Samples when p of transition is 5%

0 0.5 1
0

0.5

1
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HMM applications

Speech recognition
Natural language modeling
Analysis of biological sequences
On-line handwriting recognition (Handwritten digits)

Left-to-right architecture: Ajk of A to zero if j > k.
On-line data: each digit represented by the trajectory of the pen as a
function of time

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33
Bottom: synthetic digits from a left-to-

right HMM. 16 sequences of 16 stroke

(angle) directions.
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Maximum likelihood for the HMM

We have observed a data set X = x1, · · · , xN ,
Determine the parameters of an HMM θ = π,A, φ

The likelihood function is p(X |θ) =
∑

Z p(X ,Z |θ)

The maximum likelihood estimate is argmaxθ P(X |θ)
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Maximizing the likelihood function: EM

Expectation maximization algorithm (EM)

Initial selection for the model parameters: θold

E step:

Posterior distribution of the latent vars: p(Z |X , θold)
A log likelihood function: p(X ,Z |θ)

Q(θ, θold) = Ep(Z |X ,θold )[ln p(X ,Z |θ)]

=
∑
Z

p(Z |X , θold) ln p(X ,Z |θ)
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Maximizing the likelihood function: EM

E step:

Q(θ, θold) =
K∑

k=1

γ(z1k)lnπk︸ ︷︷ ︸
log of initial

+
N∑

n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , znk)lnAjk︸ ︷︷ ︸
log of transition

+
N∑

n=1

K∑
k=1

γ(znk)ln p(xn|φk)︸ ︷︷ ︸
log of emission

The marginal posterior distribution of a latent variable γ and the joint
posterior distribution of two successive latent variables ξ

γ(zn) = p(zn|X , θold)

ξ(zn−1, zn) = p(zn−1, zn|X , θold)
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Maximizing the likelihood function: EM

M step:

Maximize Q(θ, θold) with respect to parameters θ = {π,A, φ}, treat
γ(zn) and ξ(zn−1, zn) as constant. By using Lagrange multipliers2

πk =
γ(z1k)∑K
j=1 γ(z1j)

Ajk =

∑N
n=2 ξ(zn−1,j , znk)∑K

l=1

∑N
n=2 ξ(zn−1,j , znl)

That is, the marginals become the parameter of the categorical
(multinoulli) distribution.

2
http://cs.berkeley.edu/~stephentu/writeups/hmm-baum-welch-derivation.pdf
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Lagrangian of Q(θ, θold)

Lagrangian:

L(θ, θold) = Q(θ, θold)−λπ

(
K∑

k=1

πk − 1

)
−

K∑
j=1

λAj

(
K∑

k=1

Ajk − 1

)

−
K∑
j=1

λp(xn|φj )

(∑
xn

p(xn|φj)− 1

)
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Lagrangian of Q(θ, θold)

Partial derivative (set to 0):

∂L(θ, θold)

∂Ajk
=

N∑
n=2

ξ(zn−1,j , znk)

Ajk︸ ︷︷ ︸
∂ of log of transition

− λAj︸︷︷︸
∂ of lagrangian term

= 0

=⇒ Ajk =

∑N
n=2 ξ(zn−1,j , znk)

λAj

∂L(θ, θold)

∂λAj

= −

(
K∑

k=1

Ajk − 1

)
= 0

=⇒ λAj
=

K∑
k=1

N∑
n=2

ξ(zn−1,j , znk)

Jaesik Choi(UNIST) Learning and Inference with Dynamical Systems 16 / 39



Maximizing the likelihood function: EM

M step:

Parameters φk independent for Gaussian emission densities
p(x |φk) = N (x |µk ,Σk)

µk =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)∑

k
=

∑N
n=1 γ(znk)(xn − µk)(xn − µk)T∑N

n=1 γ(znk)
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The Forward-Backward algorithm

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Two-stage message passing algorithm to compute marginals γ and ξ

Here, we focus on alpha-beta algorithm

α(zn) ≡ p(x1, · · · , xn, zn) (13.34)

β(zn) ≡ p(xn+1, · · · , xN |zn) (13.35)
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Conditional Independence Properties in HMM

Use X[i ,j] = (xi , · · · , xj) as a simplied notation,

p(X |zn) = p(X[1,n]|zn)p(X[n+1,N]|zn) (13.24)

X[1,n] and X[n+1,N] are independent given zn

p(X[1,n−1]|xn, zn) = p(X[1,n−1]|zn)

p(X[1,n−1]|zn−1, zn) = p(X[1,n−1]|zn−1)

p(X[n+1,N]|zn, zn+1) = p(X[n+1,N]|zn+1)

p(X[n+2,N]|zn+1, xn+1) = p(X[n+2,N]|zn+1)

p(X |zn−1, zn) =p(X[1,n−1]|zn−1,zn)p(xn|zn−1,zn)p(X[n+1,N]|zn−1,zn)

= p(X[1,n−1]|zn−1)p(xn|zn)p(X[n+1,N]|zn)

p(xN+1|X[1,N], zN+1) = p(xN+1|zN+1)

p(zN+1|zN ,X ) = p(zN+1|zN) (13.31)
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The Forward Recursion

Forward recursion for α(zn)

k = 1

k = 2

k = 3

n− 1 n

α(zn−1,1)

α(zn−1,2)

α(zn−1,3)

α(zn,1)
A11

A21

A31

p(xn|zn,1)

α(zn) = p(X[1,n]|zn)p(zn) = p(xn|zn)p(X[1,n−1]|zn)p(zn)

= p(xn|zn)p(X[1,n−1], zn) = p(xn|zn)
∑
zn−1

p(X[1,n−1], zn−1, zn)

= p(xn|zn)
∑
zn−1

p(X[1,n−1]|zn−1)p(zn|zn−1)p(zn−1)

= p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1) (13.36)
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The Backward Recursion

Backward recursion for β(zn)

k = 1

k = 2

k = 3

n n+ 1

β(zn,1) β(zn+1,1)

β(zn+1,2)

β(zn+1,3)

A11

A12

A13

p(xn|zn+1,1)

p(xn|zn+1,2)

p(xn|zn+1,3)

β(zn) =
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

β(zN) = 1
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The Backward Recursion - Derivation

β(zn) = p(X[n+1,N]|zn)

=
∑
zn+1

p(X[n+1,N], zn+1|zn)

=
∑
zn+1

p(X[n+1,N]|zn, zn+1)p(zn+1|zn)

=
∑
zn+1

p(X[n+1,N]|zn+1)p(zn+1|zn)

=
∑
zn+1

p(X[n+2,N]|zn+1)p(xn+1|zn+1)p(zn+1|zn).

By using the definition of β(zn+1),

=
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn). (13.38)
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Evaluation of ξ(zn−1, zn)

Using Bayes’ theorem

ξ(zn−1, zn) = p(zn−1, zn|X ) =
p(X , zn−1, zn)

p(X )

=
p(X |zn−1, zn)p(zn−1, zn)

p(X )

=
p(X[1,n−1]|zn−1)p(xn|zn)p(X[n+1,N]|zn)p(zn|zn−1)p(zn−1)

p(X )

=
p(X[1,n−1]|zn−1)p(zn−1)p(xn|zn)p(X[n+1,N]|zn)p(zn|zn−1)

p(X )

=
α(zn−1)p(xn|zn)β(zn)p(zn|zn−1)

p(X )
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The sum-product algorithm

Solve the problem of finding local marginals for the hidden variables γ
and ξ.

Can be used instead of forward-backward algorithm
χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

Results in

γ(zn) =
α(zn)β(zn)

p(X )
(13.54)

ξ(zn−1, zn) =
α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X )
(13.43)
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Scaling factors

Used to solve forward-backward algorithm

α(zn) = p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1) (13.36)

Probabilities p(xn|zn) and p(zn|zn−1) are often significantly less than
unity, thus values α(zn) go to zero exponentially.

Re-scaled equations

α̂(zn) = p(zn|X[1,n]) =
α(zn)

p(x1, · · · , xn)
(13.55)

β̂(zn) =
β(zn)

p(xn+1, · · · , xN |x1, · · · , xn)
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Extension I - Autoregressive HMM

Longer-range effects could be included by adding extra link

zn−1 zn zn+1

xn−1 xn xn+1
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Extension II - Input-ouput HMM

Input and output pairs could be modeled (where un is an input value).

zn−1 zn zn+1

xn−1 xn xn+1

un−1 un un+1
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Extensions III - Factorial HMM

The distribution of the observed variable at a given time step is
conditional on the states of latent variables.

z(1)
n−1 z(1)

n z(1)
n+1

z(2)
n−1 z(2)

n
z(2)

n+1

xn−1 xn xn+1
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Extensions III - Factorial HMM

Latent variables (e.g., z
(1)
n−1 and z

(1)
n+1) are not d-seperated (connected

by a path given observations).

z(1)
n−1 z(1)

n z(1)
n+1

z(2)
n−1 z(2)

n z(2)
n+1

xn−1 xn xn+1
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Linear Dynamical Systems (LDSs)

A Linear-Gaussian model

The general form of algorithms for the LDS are the same as for the
HMM

Continuous latent variables

Both observed xn and latent zn variables Gaussian

Joint distribution over all variables, marginals and conditionals are
Gaussian
The sequence of individually most probable latent variable values is the
same as the most probable latent sequence
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Linear Dynamical Systems

Transition and emission probabilities

p(zn|zn−1) = N (zn|Azn−1, Γ) (13.75)

p(xn|zn) = N (xn|Czn,Σ) (13.76)

The initial latent variable

p(z1) = N (z1|µ0,V0) (13.77)

The parameters θ = {A, Γ,C ,Σ, µ0,V0} determined using maximum
likelihood through EM
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Inference with Linear Dynamical Systems

Find the marginal distributions for the latent variables conditional on
the observation sequence
Given the parameters θ = {A, Γ,C ,Σ, µ0,V0}, predict the next latent
state zn+1 and next observation xn+1

Sum-product algorithm
Kalman filter (forward-recursion, α message)
Kalman smoother (backward-recursion, β message)

blue: true position green: noisy measurements red: inferred posterior
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Kalman filtering: Model

Transition model and observation model, params θ = {A, Γ,C ,Σ, µ0,P0},
p(zn|zn−1) = N (zn|Azn−1, Γ) (13,75)

p(xn|zn) = N (xn|Czn,Σ) (13.76)

Initial value:
p(z1) = N (z1|µ0,P0) (13.77)

Linear equations expressions:

zn = Azn−1 + wn, xn = Czn + vn, z1 = µ0 + u (1)

with noise terms:

w ∼ N (w |0, Γ), v ∼ N (v |0,Σ), u ∼ N (u|0,P0). (2)
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Kalman filtering: Derivation

Normalized marginal distributions:

α̂(zn) = N (zn|µn,Vn). (13.84)

Recursion equations:

cnα̂(zn) = p(xn|zn)

∫
α̂(zn−1)p(zn|zn−1)dzn−1 (13.85)

cnN (zn|µn,Vn) = N (xn|Czn,Σ)

∫
N (zn−1|µn−1,Vn−1)N (zn|Azn−1, Γ)dzn−1

= N (xn|Czn,Σ)N (zn|Aµn−1,Pn−1) (13.87)

where Pn−1 = AVn−1A
T + Γ.
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Kalman filtering: Derivation

cnN (zn|µn,Vn) = N (xn|Czn,Σ)N (zn|Aµn−1,Pn−1)

where Pn−1 = AVn−1A
T + Γ.

Solve the above equations,

µn = Aµn−1 + Kn(xn − CAµn−1) (13.89)

Vn = (I − KnC )Pn−1 (13.90)

cn = N (xn|CAµn−1,CPn−1C
T + Σ). (13.91)

where Kn is the Kalman gain matrix:

Kn = Pn−1C
T (CPn−1C

T + Σ)−1

[Important] the exponent of a Gaussian distribution is represented by

1

2
xTΣ−1x + xTΣ−1µ+ constant = −1

2
(x − µ)TΣ−1(x − µ) (2.71)

Jaesik Choi(UNIST) Learning and Inference with Dynamical Systems 35 / 39



Kalman filtering: Illustration

Before filtering

p(zn−1|X[1,n−1])
zn−1

Diffusion by transition

p(zn|X[1,n−1]) = p(zn|zn−1)p(zn−1|X[1,n−1])

zn

Sifted and Narrowed by an observation

p(zn|X[1,n]) = p(xn|zn)p(zn|X[1,n−1])

zn
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Learning in Linear Dynamical Systems

Determine θ = {A, Γ,C ,Σ, µ0,V0} using maximum likelihood

Expectation maximization

E step: Q(θ, θold)− EZ |θold [ln p(X ,Z |θ)]
M step: Maximize with respect to the components of θ
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Extensions of LDSs

The marginal distribution of the observed variables is Gaussian
use Gaussian mixture as the initial distribution for z1

Make Gaussian approximation by linearizing around the mean of the
predicted distribution
Extended Kalman filter

Combining the HMM with a set of linear dynamical systems
Switching state space model
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Particle filters

Sampling methods

p(zn|Xn)

p(zn+1|Xn)

p(xn+1|zn+1)

p(zn+1|Xn+1) z

Needed for dynamical systems which do not have a linear-Gaussian

Sampling-importance-resampling formalism
a sequential Monte Carlo as the particle filter

Particle filter algorithm:
At time step n

obtained a set of samples and weights
observe xn+1

evaluate samples and weights for time step n + 1
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Recent Advances in Dynamical Systems



Nonparametric Regression by Gaussian Processes

• Automatic Bayesian Covariance Discovery (ABCD, The Automatic Statistician)

=

+ +

The Automatic Statistician, http://www.automaticstatistician.com), 2013



Nonparametric Regression by Gaussian Processes

• Automatic Bayesian Covariance Discovery (ABCD, The Automatic Statistician)

=

+ +

≈



Nonparametric Regression by Gaussian Processes

• Automatic Bayesian Covariance Discovery (ABCD, The Automatic Statistician)

13 raw regression datasets



Nonparametric Regression by Gaussian Processes

• Relational Automatic Bayesian Covariance Discovery with Multiple datasets

ABCD (2013,2104)

http://sail.unist.ac.kr/yunseong/

R-ABCD (ours, 2015)

The 911 attacks



Nonparametric Regression by Gaussian Processes



Recurrent Convolutional Neural Network

for EEG analysis
RNN

RCL

One chunk: Data: 3584,32



Applying RCL Convolutional Layer:(1,3584)

Max pooling 

Max pooling 

Max pooling 

Max pooling 

Max pooling 

Fully Connected 

RCL:(1,896)

RCL:(1,224)

RCL:(1,56)

RCL:(1,14)

(1,7) 

(6)

97.687%



Thank you!
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