
Seoul National University

PRML을위한기초확률이론
(Basic Probability Theory for PRML)

Yung-Kyun Noh (노영균)
Seoul National University

패턴인식및기계학습겨울학교
(Pattern Recognition and Machine Learning Winter School)

2016. 1. 20 (Wed.)



Seoul National University

Contents
• Probability / Probability density

• Conditional probability (density)

• Marginal probability (density)
• Joint probability (density)
• Inference and classification
• Gaussian Processes
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• Mapping from a random variable to a number

Probability
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Probability
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if

: random variable : set of outputs of random variables
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Probability and Probability Density
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Probability and Probability Density
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Event is defined infinitesimally: 

R1

D
R2

: set of infinitesimal events
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Can you explain the meaning of these 
functions?
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Compare with 
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Supervised Learning (Prediction)
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• Method: 
– Learning from 

examples and can 
classify an unseen 
data

label

classifier
New 
unseen 
data (a horse)

[Based on the assumption of regularity]

car car

plane
ship

horse

horse horse
car

Learn 
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=[1, 2, 5, 10, …]T

Representation of Data
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• Each datum is one point 
in a data space

Data space

elements
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Classification
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Bayes Optimal Classifier
• Our ultimate goal is not a zero error.
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(Optimal) Bayes error

Figure credit: Masashi Sugiyama
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Model on Each Class

• Model: Class-conditional density as a Gaussian

12



Seoul National University

Optimal Regression
• Minimizing mean square error
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Minimize

Minimized when  
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Model for Regression
• Obtain regression function

from data

• Choose a model       where the 
following expectation is 
minimized:

– Minimized for 

• Bias-Variance tradeoff 
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Variance Bias^2
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Several Rules
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For More Than Two Random Variables
• For three disjoint sets for a 

random variable     and another three disjoint 
sets for a random variable    :
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Conditional Probability
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Conditional Probability Density
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D

z = c

New domain

y = 1

y = 2
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Conditional Probability Density
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Marginal Probability Density
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sum
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Marginal Probability Density and Conditional 
Probability Density in Machine Learning
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Conditional PDF Conditional PDF

Joint PDF

2

1
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Marginal Probability Density and Conditional 
Probability Density in Machine Learning
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Joint PDF

sum
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Benefits of Using High Dimensionalities
• Feature 1 and Feature 2 have correlation
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Feature 1

Feature 2
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Curse of Dimensionality
– To achieve same density as N = 100  for 1-

variable
– We need N = 100D for D variables

– Conversely, when we have 60,000 data for 
10-dimensional space, the density is the 
same as 3 data in 1-dimensional space.
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GAUSSIAN DENSITY 
FUNCTION
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Gaussian Random Variable
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Principal axes are the eigenvector directions of 

p
¸1p

¸2

: eigenvalues
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Gaussian Random Variable - Projection
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Projection to any direction is Gaussian.
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Gaussian Random Variable – Marginal
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Gaussian Random Variable – Conditional
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PARAMETER ESTIMATION
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Motivation – Parameter Estimation
• Parameter estimation is an optimization 

problem
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: estimated probability density function,
in other words, density function that fits data the most
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Maximum Likelihood Estimation
• Parameter estimation is an optimization 

problem
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Maximum Likelihood for Gaussian

• With optimal parameters satisfying
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Empirical mean and empirical 
covariance are the maximum 
likelihood solutions.
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Maximum Likelihood for Gaussian
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rμ ln p(X jμ) = ~0 μ = ¹; §
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Maximum A Posteriori (MAP) Estimation

• MAP estimation

• Likelihood (Model): 
• Prior:
• Bayes rule:
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cf)
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Maximum A Posteriori (MAP) Estimation 
for Gaussian

• Let the prior

• The posterior can be calculated using
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Maximum A Posteriori (MAP) Estimation 
for Gaussian
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Maximum A Posteriori (MAP) Estimation 
for Gaussian
• Posterior density

– Caution: Posterior of     , not the density function of      

• MAP of = Mean of = 
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MLE vs. MAP
• For Gaussian

– When N is just a few (say N = 5),

39

Dominant 
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MLE vs. MAP
• For Gaussian

– When we have a few outliers
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Dominant (learn from     )
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MLE vs. MAP
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Bayesian Integration
• The final standard method of prediction is to 

use Bayesian inference instead of estimating 
the parameter point.
– Do not insert directly, but 

marginalize.
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Uncertainty of = N (¹n; ¾2 + ¾2
n)
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Conjugate Priors
• Given a likelihood pdf, , posterior 

has the same form as the prior .
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Prior Posterior
Likelihood

Two distributions
Have the same form
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Conjugate Priors
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Gaussian Gaussian
Gaussian

GammaGamma
Gaussian

Dirichlet Dirichlet
Multinomial

Beta Beta
Binomial

Gamma Gamma
Poisson
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Kullback-Leibler Divergence
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: Empirical density function
: Model density function
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Kullback-Leibler Divergence
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Likelihood:

KL Divergence: 
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Kullback-Leibler Divergence
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Model with complex function will capture the noise.
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Consistency and Bayes Error
• Objective: minimizing expected error
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Bayes error

0

Error

Smaller Larger 

Error for training data (train error)

(For example, a linear classifier with regularization)

: loss function
: A realization of 
N data
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Consistency and Bayes Error
• Consistent learner with many data
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Bayes error

0

Error

Smaller Larger 

train 
error

Minimum error of consistent learner

Consistency does not 
necessarily imply 
achieving the Bayes 
error!!!

(For example, a linear classifier with regularization)
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GAUSSIAN PROCESS 
REGRESSION
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Prediction Using Correlation
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Gaussian Process
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Figure credit: Christopher Bishop
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Gaussian Process as an Infinite 
Dimensional Gaussian
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Gaussian Process Regression 
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Figure credit: C. E. Rasmussen & C. K. I. Williams

For given 

y(x;D) = k>K¡1y
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Summary
• What we did:

– Probability and probability density
– Conditional density, marginalized density
– Model construction
– Gaussian model
– Parameter estimation
– Gaussian process

• What we didn’t do:
– Multinomial distribution and Dirichlet distribution
– Convergence of estimation
– Generative model vs. Discriminative model
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THANK YOU
Yung-Kyun Noh
nohyung@snu.ac.kr
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