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Many slides are borrowed and modified from Gábor Lugosi’s concentration inequalities lecture slides!
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http://machinelearning.snu.
ac.kr/PRMLSS2017/nonasy
mptotic.pdf
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Asymptotic / Non-asymptotic Bounds

• Limit, epsilon and delta

– For any ɛ, there exists δ such that 
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N
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Machine Learning and Consistency

• With increasing number of data

– Expected loss

– Estimated Error

– satisfies
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: loss function

<Uniform convergence>
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Interest in This Lecture

• We are interested in bounding random 
fluctuations of functions of many independent 
random variables.

• Let and

with independent random variables .
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Interest in This Lecture

• The estimator will be close enough to the true 
value (or expectation of the estimator).

– Asymptotically

– Non-asymptotically (with fixed N)
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ASYMPTOTIC CONVERGENCE
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Convergence

• Convergence in probability:

• Almost sure convergence:

• L2-convergence:

10



Seoul National University

Convergence

• Convergence in distribution
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For this distribution, convergence in distribution implies 
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Relationship Between Types of Convergence

12

quadratic mean

almost sure
probability distribution

point-mass distribution
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Relationship Between Types of Convergence

• Ex) 

13

quadratic mean

almost sure
probability distribution

point-mass distribution
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Convergence in Probability

14

A sequence is defined as follows:

…
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Convergence in Probability

• If s = 3/8, 
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For every s,            alternates between s and s+1 infinitely 
often.

…

…

Not a.s. convergence
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Convergence of Maximum Likelihood 
Estimation
• Sensitivity of probability density function with 

respect to the parameter   :
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We note 
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Convergence of MLE

• Fisher information

• Asymptotic Normality of MLE
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Convergence of MLE

• Ex)
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95% 
confidence
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NON-ASYMPTOTIC 
CONVERGENCE
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Markov’s Inequality

• If 
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Markov’s Inequality

• If 
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Markov’s Inequality

• If 
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(otherwise trivial)

Less than
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Markov’s Inequality

• If 

• The bound is tight when
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Chebyshev’s Inequality
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Chebyshev’s Inequality

25

Meaningless if 
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Example of Concentration (Chebyshev)

• If we are interested in 

with independent R.V.s 
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Example of Concentration (Chebyshev)

• If we are interested in 

with independent R.V.s 
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Example of Concentration (Chebyshev)

• We are interested in 

with independent R.V.s 

• Equivalently,
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Chernoff Bounds

• Motivation:

– Central limit theorem:
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Chernoff Bounds

• Motivation:

– Central limit theorem:
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Chernoff Bounds

• If we use

we obtain

31



Seoul National University

Chernoff Bounds

• Chernoff Bounds
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Example of Concentration (Chernoff)
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Independence

From Hoeffding’s inequality,
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Example of Concentration (Chernoff)
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Martingale and Efron-Stein Inequality
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Ex)

For
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Martingale and Efron-Stein Inequality
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Martingale and Efron-Stein Inequality

• Excercise
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Martingale and Efron-Stein Inequality
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Martingale and Efron-Stein Inequality

• Doob (Joseph Leo Doob) martingale 
representation
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Martingale and Efron-Stein Inequality
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Martingale and Efron-Stein Inequality
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Martingale and Efron-Stein Inequality
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Martingale and Efron-Stein Inequality
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Martingale and Efron-Stein Inequality
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Show that 
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Martingale and Efron-Stein Inequality

45

From Jensen’s inequality 
(Square of expectation vs. 
Expectation of square),

Note
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Martingale and Efron-Stein Inequality
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Show that .
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Martingale and Efron-Stein Inequality
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Conditional variance operator conditioned on

(from )

Also show this!!
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Martingale and Efron-Stein Inequality
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Martingale and Efron-Stein Inequality

• How can we use the inequality?
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We use

①

: independent copy of Z 
conditionally on 

Independent realizations
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Martingale and Efron-Stein Inequality

• How can we use the inequality?
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②

Conditioned on 

We use
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Functions with Bounded Differences

51

for some nonnegtive constants

(= If we change the i-th variable of f while keeping all the others 
fixed, the value of the function cannot change by more than ci.)
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Functions with Bounded Differences
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Proof:

If we let

Middle between max and min
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Kernel Density Estimation
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L1 error
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Kernel Density Estimation
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By Chebyshev’s inequality
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Bounded Difference

• Bounded difference extends to Rademacher
average bounding and McDiarmid inequality. 

• Foundations of learning theory
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Asian Conference on Machine Learning 
(ACML) in Seoul
• http://www.acml-conf.org/2017/

• Nov. 15 - 17 (Wed. – Fri.), 2017
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THANK YOU
Yung-Kyun Noh

nohyung@snu.ac.kr
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