강의자료 추가부분 Convex Optimization

for Machine Learners

Hyunjung (Helen) Shin

Dept. of Industrial Engineering Ajou University, Korea

shin@ajou.ac.kr http://www.alphaminers.net http://www.kyb.tuebingen.mpg.de/~shin

Convex Functions

Hessian Matrix

The **second-order gradient** of the **twice differentiable** real function $f: \mathbb{R}^n \to \mathbb{R}$, w.r.t. its vector argument

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \dots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

Convexity Test with Hessian

A function f is **convex** if and only if its $n \times n$ **Hessian matrix** is **positive semidefinite** for all possible values of $x \in R^n$

Convexity Test with Hessian

Quantity	Convex	Strictly Convex	Concave	Strictly Concave
$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \left[\frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \right]^2$	≥ 0	> 0	≥ 0	> 0
$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2}$	≥ 0	> 0	≤ 0	< 0
$\frac{\partial^2 f(x_1, x_2)}{\partial x_2^2}$	≥ 0	> 0	≤ 0	< 0

Convexity Test with Hessian: Ex)

$$f(\mathbf{x}) = (x_1 - x_2)^2 = x_1^2 - 2x_1x_2 + x_2^2$$

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 - 2x_2,$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = -2x_1 + 2x_2$$

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} & \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

Convexity Test with Hessian: Ex)

$$f(\mathbf{x}) = (x_1 - x_2)^2 = x_1^2 - 2x_1x_2 + x_2^2$$

(1)
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \left[\frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \right]^2 = 2(2) - (-2)^2 = 0$$

(2)
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} = 2 > 0$$

Since ≥ 0 holds for all three conditions f(x) is **convex**.

(3)
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} = 2 > 0$$

However, it is **not** strictly convex because the first condition only gives = 0 rather than > 0.

1st-order condition

Differentiable *f* with convex domain is **convex** *iff*

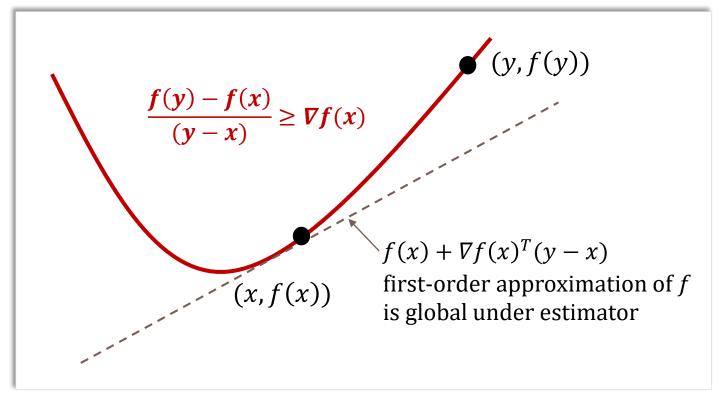
$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in dom f$

f is **differentiable** if dom f is open and the gradient exists at each $x \in dom f$

$$\nabla f(x) = (\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n})$$

1st-order condition



2nd-order condition

For **twice differentiable** *f* with convex domain *f* is **convex** *iff*

$$\nabla^2 f(x) \geqslant 0$$

for all $x \in dom f$.

If $\nabla^2 f(x) > 0$ for all $x \in dom f$, then f is **strictly convex**.

f is **twice differentiable** if dom f is open and the **Hessian**

$$\nabla^2 f(x) \in S^n$$

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \qquad i, j = 1, ..., n,$$

exists at each $x \in dom f$.

Quadratic function:
$$f(x) = \frac{1}{2}x^T P x + q^T + r$$
 (with $P \in S^n$)

$$\nabla f(x) = Px + q$$
, $\nabla^2 f(x) = P$ Convex! if $P \ge 0$

Least-Squares objective:
$$f(x) = ||Ax - b||_2^2$$

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^TA \quad \text{Convex!} \quad \text{(for any A)}$$

Quadratic-over-linear:
$$f(x,y) = \frac{x^2}{y}$$

$$\nabla^2 f(x) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \ge 0$$
Convex!

Convex Optimization: Convex functions

Practical methods for establishing convexity of a function

- 1. **Verify** definition (often simplified by restricting to a line)
- 2. For **twice differentiable** functions, show $\nabla^2 f(x) \ge 0$
- 3. Show that f is obtained from **simple convex functions** by **operations** that **preserve convexity**

Nonnegative weighted sum

Composition with affine function

Pointwise maximum and supremum

Composition

Minimization

Perspective

Convex Optimization: Simple Convex functions

Basic examples

- x^p for $p \ge 1$ or $p \le 0$; $-x^p$ for $0 \le p \le 1$
- e^x , $-\log x$, $x \log x$
- $x^T x$, $x^T x/y$ (for y > 0), $(x^T x)^{1/2}$
- $\|x\|$ (any norm)
- $\max(x_1, \dots, x_n)$, $\log(e^{x_1} + \dots + e^{x_n})$
- $\log \Phi(x)$ (Φ is Gaussian CDF)
- $\log \det X^{-1} \ (for X > 0)$

Convex Optimization: Simple Convex functions

More examples

•
$$\lambda_{max}(X)$$

$$(for X = X^T)$$

•
$$f(x) = x_{[1]} + \cdots + x_{[k]}$$

 $(sum \ of \ largest \ k \ elements \ of \ x)$

•
$$-\sum_{i=1}^{m}\log(-f_i(x))$$

(on $\{x|f_i(x) < 0\}$; f_i is convex)

•
$$f(x) = \log \operatorname{Prob}(x + z \in C)$$

(C is convex, $z \sim \mathcal{N}(0, \Sigma)$)

•
$$x^T Y^{-1}$$

 $(x \text{ is convex in } (x,Y) \text{ for } Y = Y^T > 0)$

Convex Optimization: Convex functions

Calculus Operations

Convexity preserved under...

Sums, nonnegative scaling: if f is convex,

then g(x) = f(Ax + b) is convex

Pointwise sup: if f_a is convex for each $\alpha \in A$,

then $g(x) = \sup_{a \in A} f_a(x)$ is convex

Minimization: if f(x, y) is convex,

then $g(x) = \inf_{y} f(x, y)$ is convex

Composition rules: if h is convex & increasing, f is convex,

then g(x) = h(f(x)) is convex

Perspective transformation: if f is convex,

then g(x,t) = tf(x/t) is convex for t > 0

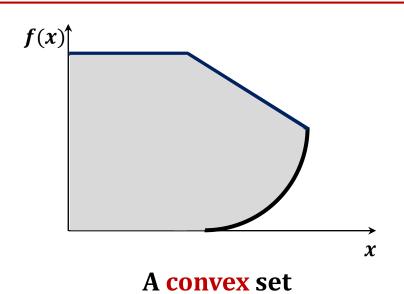
... and many, many others

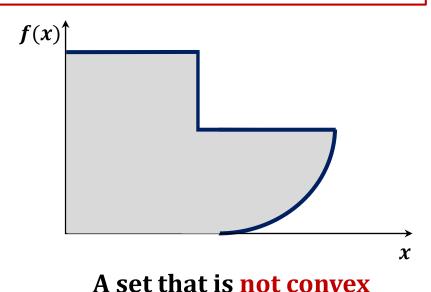
Convex Sets

Convex Set

A **convex set** is a collection of points that, for each **pair of points** in the collection, the **entire line segment** joining these two points is **also in the collections.**

A set C is **convex** iff for all $x, y \in C$ and $0 \le \alpha \le 1$, $\alpha x + (1 - \alpha)y \in C$





Practical methods for establishing convexity of a set C

1. Apply **definition**

$$\alpha x + (1 - \alpha)y \in C$$
, $x, y \in C$ and $0 \le \alpha \le 1$

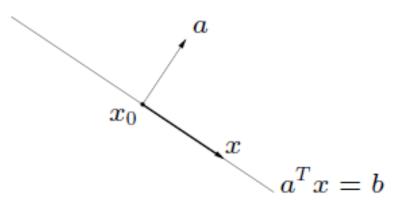
- 2. Show that *C* is obtained from **simple convex sets** : **hyperplanes**, **half-spaces**, **norm balls**, . . .
- 3. **Operations** that **preserve convexity**

Intersection
Affine functions
Perspective function
Linear-fractional functions

Hyperplane:

set of the form $\{x | a^T x = b\} (a \neq 0)$

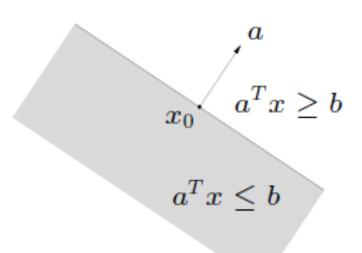
a is the normal vector



Hyperplanes are **affine** and **convex**

Halfspace:

set of the form $\{x | a^T x \le b\} (a \ne 0)$



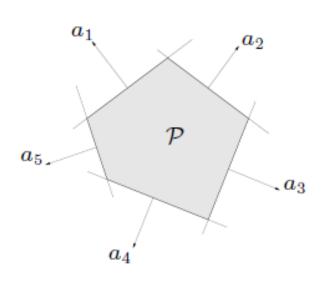
Halfspaces are **convex**

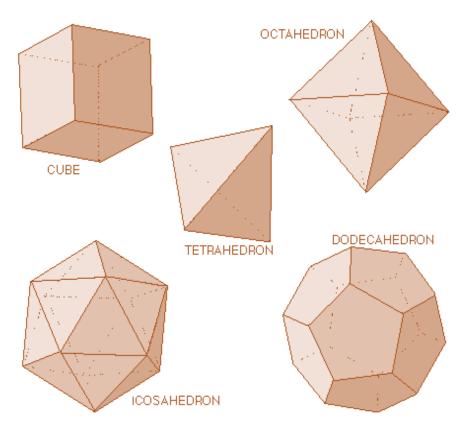
Polyhedra

Solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n},$ \leq is componentwise inequality)





Polyhedron is **intersection** of finite number of **halfspaces** and **hyperplanes**

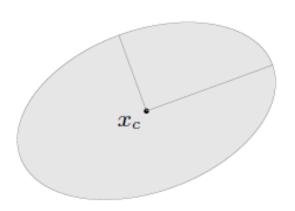
(Euclidean) ball with center x_c and radius r:

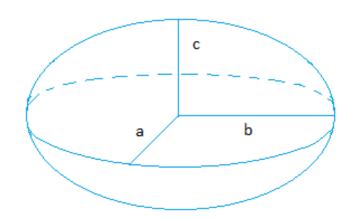
$$B(x_c, r) = \{x | \|x - x_c\|_2 \le r\} = \{x_c + ru | \|u\|_2 \le 1\}$$

Ellipsoid: set of the form

$$\{x | (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in S_{++}^n(i.e., P \text{ symmetric positive definite})$

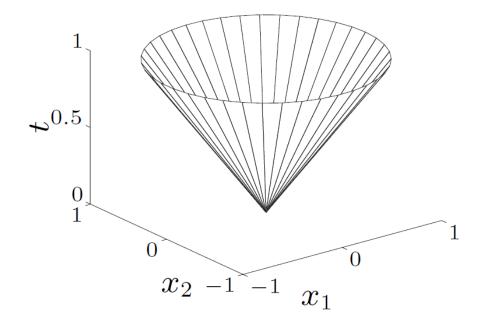




Other representation: $\{x_c + Au | ||u||_2 \le 1\}$ with *A* square and nonsingular

Norm cone

$$\{(x,t)|||x|| \le t\}$$



Norm cones are **convex**

Euclidean norm cone is called **second-order cone**

PSD Cone

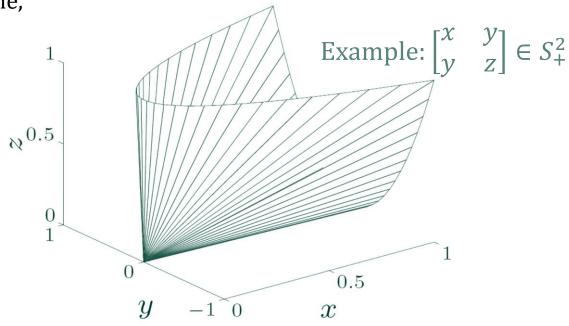
 $S_+^n = \{X \in S^n | X \ge 0\}$ positive semidefinite $n \times n$ matrices

PD Cone

 $S_{++}^n = \{X \in S^n | X > 0\}$: positive definite $n \times n$ matrices

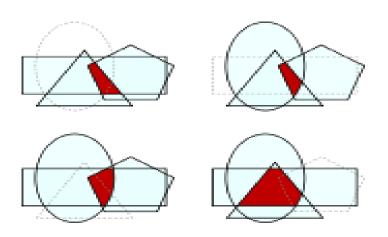
$$X \in S^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

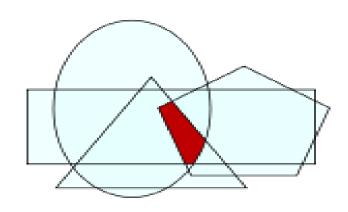
where S_{+}^{n} is convex cone, S^{n} is set of symmetric $n \times n$ matrices



Intersection

The intersection of (any number of) convex sets is convex





Affine Function Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine

$$f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$$
 $A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$

The **image of a convex set** under f is **convex**

$$S \subseteq \mathbb{R}^n \text{ convex } \longrightarrow f(S) = \{f(x) \mid x \in S\}$$

The **inverse image** $f^{-1}(C)$ **of a convex set** under f is **convex**

$$C \subseteq \mathbb{R}^m \text{ convex } \longrightarrow f^{-1}(C) = \{x \in \mathbb{R}^n | f(x) \in C\}$$

Scaling, Translation, Projection

Solution set of **linear matrix inequality**, $\{x | x_1 A_1 + \dots + x_m A_m \leq B\}$ with $A_i, B \in S^p$

Hyperbolic cone $\{x | x^T P x \le (c^T x)^2, c^T x \ge 0\}$ with $P \in S^n_+$

Perspective Function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$,

$$P(x,t) = {}^{x}/_{t}, \quad dom P = \{(x,t)|t>0\}$$

The (inverse) images of convex sets under perspective are convex

Linear-fractional Function $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x) = \frac{Ax+b}{c^Tx+d}, \quad dom f = \{x | c^Tx + d > 0\}$$

The (inverse) images of convex sets under linear-fractional functions are convex