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Main Research Directions

1 Vector-valued Reproducing Kernel Hilbert Spaces (RKHS) and
Applications

2 Geometrical methods in Machine Learning and Applications
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Geometrical methods in Machine Learning

Exploit the geometrical structures of data
Current theoretical focus: Infinite-dimensional generalizations of
the geometrical structures of the set of Symmetric Positive
Definite (SPD) matrices
Current computational focus: Geometry of RKHS covariance
operators
Current practical application focus: Image representation by
covariance matrices and covariance operators
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Covariance Matrices and Covariance Operators

Motivations

Covariance matrices: many applications in computer vision, brain
imaging, radar signal processing etc

Powerful approach for data representation by encoding input
correlations
Rich mathematical theories and computational algorithms
Very good practical performances

Covariance operators (infinite-dimensional setting):
Nonlinear generalization of covariance matrices
Can be much more powerful as a form of data representation
Can achieve substantial gains in practical performances
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Covariance matrices: Motivations

Symmetric Positive Definite (SPD) matrices

Sym++(n) = set of n × n SPD matrices

Have been studied extensively mathematically
Numerous practical applications

Brain imaging (Arsigny et al 2005, Dryden et al 2009, Qiu et al
2015)
Computer vision: object detection (Tuzel et al 2008, Tosato et al
2013), image retrieval (Cherian et al 2013), visual recognition
(Jayasumana et al 2015), many more
Radar signal processing: Barbaresco (2013), Formont et al 2013
Machine learning: kernel learning (Kulis et al 2009)
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Example: Covariance matrix representation of images

Tuzel, Porikli, Meer (ECCV 2006, CVPR 2006): covariance
matrices as region descriptors for images (covariance descriptors)
Given an image F (or a patch in F ), at each pixel, extract a feature
vector (e.g. intensity, colors, filter responses etc)
Each image corresponds to a data matrix X

X = [x1, . . . , xm] = n ×m matrix

where
m = number of pixels
n = number of features at each pixel
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Example: Covariance matrix representation of images

X = [x1, . . . , xm] = data matrix of size n ×m, with m observations

Empirical mean vector

µX =
1
m

m∑
i=1

xi =
1
m

X1m, 1m = (1, . . . ,1)T ∈ Rm

Empirical covariance matrix

CX =
1
m

m∑
i=1

(xi − µX)(xi − µX)T =
1
m

XJmXT

Jm = Im −
1
m

1m1T
m = centering matrix
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Example: Covariance matrix representation of images

Image F ⇒ Data matrix X⇒ Covariance matrix CX

Each image is represented by a covariance matrix
Example of image features

f(x , y)

=

[
I(x , y),R(x , y),G(x , y),B(x , y), |∂R

∂x
|, |∂R
∂y
|, |∂G
∂x
|, |∂G
∂y
|, |∂B
∂x
|, |∂B
∂y
|
]

at pixel location (x , y)
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Example

Figure: An example of the covariance descriptor. At each pixel (x , y), a
10-dimensional feature vector
f(x , y) = [I(x , y),R(x , y),G(x , y),B(x , y), |∂R

∂x |, |
∂R
∂y |, |

∂R
∂x |, |

∂R
∂y |, |

∂R
∂x |, |

∂R
∂y |] is

extracted. From top to bottom, left to right: the original color image; the
grayscale image I; the three color channels R (red), G (green), and (blue); the
magnitudes of the partial derivatives |∂R

∂x |, |
∂R
∂y |, |

∂G
∂x |, |

∂G
∂y |, |

∂B
∂x |, |

∂B
∂y |; and

finally the 10× 10 covariance matrix of these features.
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Covariance matrix representation - Properties

Encode linear correlations (second order statistics) between
image features
Flexible, allowing the fusion of multiple and different features

Handcrafted features, e.g. colors and SIFT
Convolutional features

Compact
Robust to noise
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Covariance matrix representation - generalization

Covariance representation for video: e.g. Guo et al (AVSS 2010),
Sanin et al (WACV 2013)

Employ features that capture temporal information, e.g. optical flow

Covariance representation for 3D point clouds and 3D shapes:
e.g. Fehr et al (ICRA 2012, ICRA 2014), Tabias et al (CVPR
2014), Hariri et al (Pattern Recognition Letters 2016)

Employ geometric features e.g. curvature, surface normal vectors
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Statistical interpretation

Representing an image by a covariance matrix

is essentially equivalent to

Representing an image by a Gaussian probability density ρ in Rn with
mean zero

Features extracted are random observations of a n-dimensional
random vector with probability density ρ
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Geometry of SPD Matrices

A,B ∈ Sym++(n) = set of n × n SPD matrices
Euclidean distance dE (A,B) = ||A− B||F
Riemannian manifold viewpoint

Affine-invariant Riemannian distance (e.g. Pennec et al 2006,
Bhatia 2007)

daiE(A,B) = || log(A−1/2BA−1/2)||F

Log-Euclidean distance (Arsigny et al 2007)

dlogE(A,B) = || log(A)− log(B)||F

Optimal transport viewpoint Bures-Wasserstein-Fréchet distance
(Dowson and Landau 1982, Olkin and Pukelsheim 1982, Givens
and Shortt 1984, Gelbrich 1990)

dBW(A,B) =
(

tr[A + B − 2(A1/2BA1/2)]
)1/2
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Statistical Interpretation

Affine-Invariant Metric

Close connection with Fisher-Rao metric in information geometry
(e.g. Amari 1985)
For two multivariate Gaussian probability densities ρ1 ∼ N (µ,C1),
ρ2 ∼ N (µ,C2)

daiE(C1,C2) = 2(Fisher-Rao distance between ρ1 and ρ2 )
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Statistical Interpretation

Bures-Wasserstein Distance

µX ∼ N (m1,A) and µY ∼ N (m2,B) = Gaussian probability
distributions on Rn

L2-Wasserstein distance between µX and µY

d2
W(µX , µY ) = inf

µ∈Γ(µX ,µY )

∫
Rn×Rn

||x − y ||2dµ(x , y)

= ||m1 −m2||2 + tr[A + B − 2(A1/2BA1/2)1/2]
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Geometry of SPD Matrices

Convex cone viewpoint
Alpha Log-Determinant divergences (Chebbi and Moakher, 2012)

dαlogdet(A,B) =
4

1− α2 log
det(1−α

2 A + 1+α
2 B)

det(A)
1−α

2 det(B)
1+α

2

, −1 < α < 1

Limiting cases

d1
logdet(A,B) = lim

α→1
dαlogdet(A,B) = tr(B−1A− I)− log det(B−1A)

d−1
logdet(A,B) = lim

α→−1
dαlogdet(A,B) = tr(A−1B − I)− log det(A−1B)

Are generally not metrics
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Alpha Log-Determinant divergences

α = 0: Symmetric Stein divergence (also called S-divergence)

d0
logdet(A,B) = 4

[
log

(
A + B

2

)
− 1

2
log det(AB)

]
= 4d2

stein(A,B)

Sra (NIPS 2012):

dstein(A,B) =

√
log

(
A + B

2

)
− 1

2
log det(AB)

is a metric (satisfying positivity, symmetry, and triangle inequality)
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Statistical Interpretation

Alpha Log-Determinant Divergences

Close connection with Kullback-Leibler and Rényi divergences
For two multivariate Gaussian probability densities ρ1 ∼ N (µ,C1),
ρ2 ∼ N (µ,C2)

dαlogdet(C1,C2) = constant(a Rényi divergence between ρ1 and ρ2 )

d1
logdet(C1,C2) = 2(Kullback-Leibler divergence between ρ1 and ρ2 )
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Kernel methods with Log-Euclidean metric

S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi.
Kernel methods on the Riemannian manifold of symmetric positive
definite matrices. CVPR 2013.
S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi.
Kernel methods on Riemannian manifolds with Gaussian RBF
kernels, PAMI 2015.
P. Li, Q. Wang, W. Zuo, and L. Zhang. Log-Euclidean kernels for
sparse representation and dictionary learning, ICCV 2013
D. Tosato, M. Spera, M. Cristani, and V. Murino. Characterizing
humans on Riemannian manifolds, PAMI 2013
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Kernel methods with Log-Euclidean metric
for image classification
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Material classification

Example: KTH-TIPS2b data set

f(x , y) =
[
R(x , y),G(x , y),B(x , y),

∣∣G0,0(x , y)
∣∣ , . . . ∣∣G3,4(x , y)

∣∣]
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Object recognition

Example: ETH-80 data set

f(x , y) = [x , y , I(x , y), |Ix |, |Iy |]
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Numerical results

Better results with covariance operators (later)!

Method KTH-TIPS2b ETH-80

E 55.3% 64.4%
(±7.6%) (±0.9%)

Stein 73.1% 67.5%
(±8.0%) (±0.4%)

Log-E 74.1 % 71.1%
(±7.4%) (±1.0%)

H.Q. Minh (AIP) Covariance Matrices and Operators February 2019 23 / 52



Comparison of metrics

Results from Cherian et al (PAMI 2013) using Nearest Neighbor

Method Texture Activity

Affine-invariant 85.5% 99.5%

Stein 85.5% 99.5%

Log-E 82.0% 96.5%

Texture: images from Brodatz and CURET datasets
Activity: videos from Weizmann, KTH, and UT Tower datasets
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Covariance operator representation - Motivation

Covariance matrices encode linear correlations of input features
Nonlinearization

1 Map original input features into a high (generally infinite)
dimensional feature space (via kernels)

2 Covariance operators: covariance matrices of infinite-dimensional
features

3 Encode nonlinear correlations of input features
4 Provide a richer, more expressive representation of the data
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Covariance operator representation

S.K. Zhou and R. Chellappa. From sample similarity to ensemble
similarity: Probabilistic distance measures in reproducing kernel
Hilbert space, PAMI 2006
M. Harandi, M. Salzmann, and F. Porikli. Bregman divergences for
infinite-dimensional covariance matrices, CVPR 2014
H.Q.Minh, M. San Biagio, V. Murino. Log-Hilbert-Schmidt metric
between positive definite operators on Hilbert spaces, NIPS 2014
H.Q.Minh, M. San Biagio, L. Bazzani, V. Murino. Approximate
Log-Hilbert-Schmidt distances between covariance operators for
image classification, CVPR 2016
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From covariance matrices

X = [x1, . . . , xm] = data matrix with m observations, sampled according
to some probability distribution ρ on the input space X = Rn

Empirical mean vector

µX =
1
m

m∑
i=1

xi =
1
m

X1m, 1m = (1, . . . ,1)T ∈ Rm

Empirical covariance matrix

CX =
1
m

m∑
i=1

(xi − µX)(xi − µX)T =
1
m

XJmXT

Jm = Im −
1
m

1m1T
m = centering matrix
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To RKHS covariance operators

X = [x1, . . . , xm] = data matrix randomly sampled according to ρ
on the input space X , with m observations
Positive definite kernel K , RKHS HK , feature map Φ : X → HK

Informally, Φ gives an infinite feature matrix in the feature space
HK , of size dim(HK )×m

Φ(X) = [Φ(x1), . . . ,Φ(xm)]

Formally, Φ(X) : Rm → HK is the bounded linear operator

Φ(X)w =
m∑

i=1

wiΦ(xi), w ∈ Rm
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RKHS covariance operators

Empirical RKHS mean

µΦ(X) =
1
m

m∑
i=1

Φ(xi) =
1
m

Φ(X)1m ∈ HK

Empirical covariance operator CΦ(x) : HK → HK

CΦ(X) =
1
m

Φ(X)JmΦ(X)∗

Jm = Im − 1
m 1m1T

m = centering matrix
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RKHS covariance operators

Theoretical mean

µΦ =

∫
X

Φ(x)dρ(x) ∈ HK

Theoretical covariance operator CΦ : HK → HK

CΦ =

∫
X

Φ(x)⊗ Φ(x)dρ(x)− µΦ ⊗ µΦ
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Geometry of Covariance Operators

H.Q. Minh et al. Log-Hilbert-Schmidt metric between positive
definite operators on Hilbert spaces, NIPS 2014

Infinite-dimensional generalization of the Log-Euclidean
Riemannian metric on the manifold of SPD matrices
Closed form formulas in the case of RKHS covariance operators

H.Q. Minh. Affine-invariant Riemannian distance between
infinite-dimensional covariance operators, Geometric Science of
Information 2015
H.Q.Minh, M. San Biagio, L. Bazzani, V. Murino. Approximate
Log-Hilbert-Schmidt Distances between Covariance Operators for
Image Classification, CVPR 2016
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Geometry of Covariance Operators

H.Q. Minh. Infinite-dimensional Log-Determinant divergences
between positive definite trace class operators, Linear Algebra
and its Applications 2017

Infinite-dimensional generalization of the Alpha Log-Determinant
divergences on the convex cone of SPD matrices
Closed form formulas in the case of RKHS covariance operators

H.Q. Minh. Infinite-Dimensional Log-Determinant Divergences II:
Alpha-Beta divergences, under review Information Geometry
https://arxiv.org/abs/1610.08087

H.Q. Minh. Log-Determinant divergences between positive
definite Hilbert-Schmidt operators, Geometric Science of
Information 2017
H.Q. Minh. Infinite-Dimensional Log-Determinant Divergences III:
Log-Euclidean and Log-Hilbert-Schmidt divergences, Information
Geometry and Its Applications 2018
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From finite to infinite-dimensional settings
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Infinite-dimensional generalizations

Substantially different from the finite-dimensional formulations
Problems: A = strictly positive, self-adjoint compact operator (e.g.
covariance operator)

1 Eigenvalues λk → 0 as k →∞
2 1

λk
→∞ and log(λk )→ −∞

3 A−1 is unbounded
4 log(A) is unbounded
5 det(A) is always zero

H.Q. Minh (AIP) Covariance Matrices and Operators February 2019 34 / 52



Infinite-dimensional generalization of Sym++(n)
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Geometry of positive definite operators

Larotonda (Differential Geometry and Its Applications 2007):
generalization of the manifold Sym++(n) of SPD matrices to the
infinite-dimensional Hilbert manifold

Σ(H) = {A + γI > 0 : A∗ = A,A ∈ HS(H), γ ∈ R}

Hilbert-Schmidt operators on the Hilbert space H

HS(H) = {A : ||A||2HS = tr(A∗A) =
∞∑

k=1

||Aek ||2 <∞}

for any orthonormal basis {ek}∞k=1

A self-adjoint ||A||2HS =
∑∞

k=1 λ
2
k

Generalization of the affine-invariant Riemannian metric
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Log-Hilbert-Schmidt distance

Generalizing Log-Euclidean distance dlogE(A,B) = || log(A)− log(B)||

Log-Hilbert-Schmidt distance

dlogHS[(A + γI), (B + νI)] = || log(A + γI)− log(B + νI)||eHS

Extended Hilbert-Schmidt norm

||A + γI||2eHS = ||A||2HS + γ2

Extended Hilbert-Schmidt inner product

〈A + γI,B + νI〉 = 〈A,B〉HS + γν
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Log-Hilbert-Schmidt distance

Why log(A + γI)? Why extended Hilbert-Schmidt norm?
A ∈ Sym++(n), with eigenvalues {λk}nk=1 and orthonormal
eigenvectors {uk}nk=1

A =
n∑

k=1

λkukuT
k , log(A) =

n∑
k=1

log(λk )ukuT
k

A : H → H self-adjoint, positive, compact operator, with
eigenvalues {λk}∞k=1, λk > 0, limk→∞ λk = 0, and orthonormal
eigenvectors {uk}∞k=1

A =
∞∑

k=1

λk (uk ⊗ uk ), (uk ⊗ uk )w = 〈uk ,w〉uk

log(A) =
∞∑

k=1

log(λk )(uk ⊗ uk ), lim
k→∞

log(λk ) = −∞
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Log-Hilbert-Schmidt distance

Why log(A + γI)? Why extended Hilbert-Schmidt norm?

log(A) is unbounded
log(A + γI) is bounded
Hilbert-Schmidt norm

|| log(A + γI)||2HS =
∞∑

j=1

[log(λk + γ)]2 =∞ if γ 6= 1

The extended Hilbert-Schmidt norm

|| log(A + γI)||2eHS = || log(
A
γ

+ I)||2HS + (log γ)2

=
∞∑

j=1

[log(
λk

γ
+ 1)]2 + (log γ)2 <∞
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Log-Hilbert-Schmidt distance between RKHS
covariance operators

The distance

dlogHS[(CΦ(X) + γIHK ), (CΦ(Y) + νIHK )]

= dlogHS

[(
1
m

Φ(X)JmΦ(X)∗ + γIHK

)
,

(
1
m

Φ(Y)JmΦ(Y)∗ + νIHK

)]
has a closed form in terms of m ×m Gram matrices

K [X] = Φ(X)∗Φ(X), (K [X])ij = K (xi , xj),

K [Y] = Φ(Y)∗Φ(Y), (K [Y])ij = K (yi , yj),

K [X,Y] = Φ(X)∗Φ(Y), (K [X,Y])ij = K (xi , yj)

K [Y,X] = Φ(Y)∗Φ(X), (K [Y,x])ij = K (yi , xj)
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Log-Hilbert-Schmidt distance between RKHS
covariance operators

1
γm

JmK [X]Jm = UAΣAUT
A ,

1
µm

JmK [Y]Jm = UBΣBUT
B ,

A∗B =
1

√
γµm

JmK [X,Y]Jm

CAB = 1T
NA

log(INA + ΣA)Σ−1
A (UT

A A∗BUB ◦ UT
A A∗BUB)Σ−1

B log(INB + ΣB)1NB
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Example: Log-Hilbert-Schmidt distance between
RKHS covariance operators

Closed form expression

Theorem (H.Q.M. et al - NIPS 2014)
Assume that dim(HK ) =∞. Let γ > 0, ν > 0. The Log-Hilbert-Schmidt
distance between (CΦ(X) + γIHK ) and (CΦ(Y) + νIHK ) is

d2
logHS[(CΦ(X) + γIHK ), (CΦ(Y) + νIHK )] = tr[log(INA + ΣA)]2 + tr[log(INB + ΣB)]2

− 2CAB + (log γ − log ν)2
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Log-Hilbert-Schmidt distance between RKHS
covariance operators

Closed form expression

Theorem (H.Q.M. et al - NIPS2014)
Assume that dim(HK ) <∞. Let γ > 0, ν > 0. The Log-Hilbert-Schmidt
distance between (CΦ(X) + γIHK ) and (CΦ(Y) + νIHK ) is

d2
logHS[(CΦ(X) + γIHK ), (CΦ(Y) + νIHK )]

= tr[log(INA + ΣA)]2 + tr[log(INB + ΣB)]2 − 2CAB

+ 2(log
γ

ν
)(tr[log(INA + ΣA)]− tr[log(INB + ΣB)])

+ (log γ − log ν)2dim(HK )
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Example: Two-layer kernel machine for image
classification (H.Q.Minh et al - NIPS 2014)
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Approximate methods for reducing computational
complexity

M. Faraki, M. Harandi, and F. Porikli, Approximate
infinite-dimensional region covariance descriptors for image
classification, ICASSP 2015
H.Q. Minh, M. San Biagio, L. Bazzani, V. Murino. Approximate
Log-Hilbert-Schmidt distances between covariance operators for
image classification, CVPR 2016
Q. Wang, P. Li, W. Zuo, and L. Zhang. RAID-G: Robust estimation
of approximate infinite-dimensional Gaussian with application to
material recognition, CVPR 2016
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Two-layer kernel machine with the approximate
Log-Hilbert-Schmidt distance (H.Q.M et al CVPR
2016)
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Example: Object recognition

Example: ETH-80 data set

f(x , y) = [x , y , I(x , y), |Ix |, |Iy |]
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Example: Object recognition

Results obtained using approximate Log-HS distance (H.Q.M et al,
CVPR 2016)

Method ETH-80

Euclidean 64.4%(±0.9%)

Stein 67.5% (±0.4%)

Log-Euclidean 71.1%(±1.0%)

HS 93.1 % (±0.4)

Approx-LogHS 95.0% (±0.5%)
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Further detail

H.Q. Minh and V. Murino. Covariances in Computer Vision and
Machine Learning, Morgan & Claypool Publishers, 2017
H.Q. Minh and V. Murino. From Covariance Matrices to
Covariance Operators: Data Representation from Finite to
Infinite-Dimensional Settings. In Algorithmic Advances in
Riemannian Geometry and Applications, Springer, 2017
H.Q. Minh. International Conference on Computer Vision (ICCV
2017) Tutorial, http://www.covariance2017.eu/
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Exposition

Covariance representation in computer vision
From finite to infinite-dimensional settings
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Exposition
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Thank you for listening!
Questions, comments, suggestions?
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