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Automatic Materials Design
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Learning
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(DFT etc) Experiments
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Data



• Bayesian Optimization
• Design of Si-Ge nanostructures (Ju+, PRX 

2017)

• Wavelength selective thermal radiator 
(Sakurai+, ACS Cent Sci, 2019) 

• D-wave quantum annealer (Kitai+, Arxiv, 2019) 
3
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Bayesian Optimization
(Jones et al., 1998)

• Find best data points with minimum number 
of observations

• Choose next point to observe to discover the 
best ones as early as possible



Screening by first principles 
calculations alone
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Bayesian Optimization (1)
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Bayesian Optimization (2) 
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Bayesian Optimization (3)
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Bayesian Optimization (4)
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Where to observe next?
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Gaussian Process

11

Current
Maximum

Explanatory Variable

M
easured Value



Maximum probability of improvement
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Alloy Structure Optimization (Phys Rev X, 2017)

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0
… … … … … … … … … … … … … … … … …

Descriptors:

Calculator: Atomistic Green’s Function (AGF): Phonon transmission

Question: How to organize 16 alloy atoms (Si: 8, Ge: 8) to obtain the largest and
smallest interfacial thermal conductance?

870,128
16 =C

Optimization method: Thompson Sampling (Bayesian Optimization) 
Evaluator: Interfacial Thermal Conductance (ITC)

Si/Ge alloy regionLead Lead
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Alloy Structure Optimization

ITC Si-Si Si-Ge

Max

Min

Optimal structures were obtained by calculating only 3.4% of all candidates.
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Wavelength selective thermal radiator

Solar absorber Sky radiator Heater for drying

Sakurai Lab (Nigata Univ)



Designing layered material

• 18 layers: Ge, Si or Si02

• Total thickness: 21 grid 
points between 3.6 μm
and 4.0 μm

• Number of candidate 
structures: 318 x 21 = 
8,135,830,269
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What to optimize

• Figure of Merit
– Appreciates peaks near 

target, penalizes peaks 
outside

• Calculation of 
emissivity spectra
– Electromagnetic 

simulation via transfer 
matrix method 



Optimal solution found with 168 
million calculations on average

(2.06% of all possibilities) 

24 cores, 24 days

Target: 6.0 μm



Target: 5.0 μm Target: 7.0 μm



Calculated
Experimental 
Validation



Experimental Validation

Layer ThicknessTEM image



Comparison with Existing Materials

• Q-factor: Peak sharpness

• Our material: Q=273 (Simulation), Q= 188 

(Realized)

• Highest known Q-factor: 200 (2D grating 

coupled surface phonon polaritons, 2008)

– Large unwanted peaks: Poor FOM = 0.02

– High cost for nanofabrication



Quantum annealing

• Solves quadratic unconstrained binary 
optimization (QUBO)

• D-wave 2000Q 
– Implementation of quantum annealing with 

superconducting semiconductor

– Annealing time 170μs, up to 64 bits

– Machine in Canada, accessed via API from Japan



Principle of quantum annealing

• QUBO + transverse field term 

• Qubit has distribution of up and down  

• When measured, up or down appears

• First, strong transverse field is applied
– [up,down] = [0.5,0.5] is the ground state

• Then transverse field is weakened slowly
– Ground state slides to global optimum of QUBO

• Conceptually similar to regularization path following (?)



Using QA for black-box optimization

• GP’s acquisition function is not QUBO (BAD!)
• Use factorization machine instead

• A learned model becomes QUBO
• 50 annealing at a time, select the best unseen 

solution









Comparison to existing materials



Conclusion
• Designing complex materials is beyond ability 

of human intuition
• New “class” of materials enabled by ML & QA
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