
Feb. 23, 2019

,
Robust Learning and More:

Overview of Our Recent Advances

,
Robust Learning and More:

Overview of Our Recent Advances

Masashi Sugiyama

Imperfect Information Learning Team
RIKEN Center for Advanced Intelligence Project

Machine Learning and Statistical Data Analysis Lab
The University of Tokyo

The Second Korea-Japan Machine Learning Workshop, Jeju, Korea

Weakly Supervised Classification



2About Myself

Affiliations:
 Director: RIKEN AIP

 Professor: University of Tokyo

 Consultant: several local startups

Research interests:
 Theory and algorithms of ML

 Real-world applications with partners

Goal:
 Develop practically useful algorithms

that have theoretical support
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What Is This Tutorial about?
Machine learning from big labeled data

is highly successful.
 Speech recognition, image understanding,

natural language translation, recommendation…

However, there are various applications
where massive labeled data is not available.
 Medicine, disaster, infrastructure, robotics, …

Learning from limited information is promising.
 Not learning from small samples.

 We need many data, but they can be “weak”.
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Our Target Problem:
Binary Supervised Classification

Larger amount of labeled data yields 
better classification accuracy.

Estimation error of the boundary
decreases in order         .

5

Positive

Negative

Boundary

: Number of labeled samples



Unsupervised Classification 6

Gathering labeled data is costly. Let’s use 
unlabeled data that are often cheap to collect:

 Unsupervised classification is typically clustering.

 This works well only when each cluster 
corresponds to a class.

Unlabeled



Semi-Supervised Classification

Use a large number of unlabeled samples and 
a small number of labeled samples.

Find a boundary along the cluster structure
induced by unlabeled samples:
 Sometimes very useful.

 But not that different from unsupervised classification.
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Weakly-Supervised Learning
High-accuracy and low-cost classification 

by empirical risk minimization.
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Method 1: PU Classification 9

Only PU data is available; N data is missing:
 Click vs. non-click

 Friend vs. non-friend

From PU data, PN classifiers are trainable!

Positive

Unlabeled (mixture of
positives +1 and negatives)

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016), Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

Hsieh, Niu & Sugiyama (arXiv2018), Kato, Xu, Niu & Sugiyama (arXiv2018)
Kwon, Kim, Sugiyama & Paik (arXiv2019),  Xu, Li, Niu, Han & Sugiyama (arXiv2019)



Method 2: PNU Classification
(Semi-Supervised Classification)
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Let’s decompose PNU into PU, PN, and NU:
 Each is solvable.

 Let’s combine them!

Without cluster assumptions,
PN classifiers are trainable!

PU NUPN

Sakai, du Plessis, Niu & Sugiyama (ICML2017), Sakai, Niu & Sugiyama (MLJ2018)
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Method 3: Pconf Classification

Only P data is available, not U data:
 Data from rival companies cannot be obtained.

 Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.

From Pconf data, PN classifiers are trainable!
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Ishida, Niu & Sugiyama (NeurIPS2018)
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Method 4: UU Classification 12

From two sets of unlabeled data with different 
class priors, PN classifiers are trainable!

du Plessis, Niu & Sugiyama (TAAI2013)
Nan, Niu, Menon & Sugiyama (ICLR2019)



Method 5: SU Classification

Delicate classification (salary, religion…):
 Highly hesitant to directly answer questions.

 Less reluctant to just say “same as him/her”.

From similar and unlabeled data,
PN classifiers are trainable!

13

Bao, Niu & Sugiyama (ICML2018)



Method 6: Comp. Classification

Labeling patterns in multi-class problems:
 Selecting a collect class from a long list of 

candidate classes is extremely painful.

Complementary labels:
 Specify a class that

a pattern does not belong to.

 This is much easier and
faster to perform!

From complementary labels,
classifiers are trainable!
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Ishida, Niu, Menon & Sugiyama (arXiv2018)



Learning from Weak Supervision15
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Sugiyama, Niu, Sakai & Ishida,
Machine Learning from Weak Supervision
MIT Press, 2020 (?)



Model vs. Learning Methods 16
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Any learning method and 
model can be combined!

Theory Experiments
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Robustness in Deep Learning

Deep learning is successful.

However, real-world is severe and various 
types of robustness is needed for reliability:
 Robustness to noisy training data.

 Robustness to changing environments.

 Robustness to noisy test inputs.
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Coping with Noisy Training Outputs

Using a “flat” loss is suitable for robustness:
 Ex) L1-loss is more robust than L2-loss.

However, in Bayesian inference, robust loss is 
often computationally intractable.

Our proposal: Not change the loss, but change 
the KL-div to robust-div in variational inference. 
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Futami, Sato & Sugiyama (AISTATS2018)



Coping with Noisy Training Outputs

Memorization of neural networks:
 Empirically, clean data are fitted faster than noisy data.

“Co-teaching” between two networks:
 Select small-loss instances as clean data

and teaches themto another network.

Experimentally works very well!
 But no theory.
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Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurIPS2018)



Coping with Changing Environments

Distributionally robust
supervised learning:
 Being robust to the

worst test distribution.

 Works well in regression.

Our finding: In classification, this merely results 
in the same non-robust classifier.
 Since the 0-1 loss is different from a surrogate loss.

Additional distributional assumption can help:
 E.g., latent prior change
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Hu, Sato & Sugiyama (ICML2018)

Storkey & Sugiyama (NIPS2007)



Coping with Noisy Test Inputs

Adversarial attack
can fool a classifier.

Lipschitz-margin training:

 Calculate the Lipschitz constant for each layer and 
derive the Lipschitz constant     for entire network.

 Add prediction margin to soft-labels while training.

 Provable guarded area for attacks.

 Computationally efficient and empirically robust.
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Tsuzuku, Sato & Sugiyama (NeurIPS2018)
https://blog.openai.com/adversarial-example-research/



Coping with Noisy Test Inputs

 In severe applications, better to reject difficult 
test inputs and ask human to predict instead.

Approach 1: Reject low-confidence prediction
 Existing methods have limitation in loss functions 

(e.g, logistic loss), resulting in weak performance.

 New rejection criteria for general losses with 
theoretical convergence guarantee.

Approach 2: Train classifier and rejector
 Existing methods only focuses on binary problems.

 We show that this approach does not converge to 
the optimal solution in multi-class case.
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Ni, Charoenphakdee, Honda & Sugiyama (arXiv2019)
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Estimation of
Individual Treatment Effect 

Restriction: Due to privacy reasons, we can’t 
have           -triplets, but only        - and        -
pairs without correspondence in   . 

Result: Solvable if we have        - and        -pairs 
with two different treatment policies.

Potential applications: Marketing/political 
campaign, medicine…
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Yamane, Yger, Atif & Sugiyama (NeurIPS2018)
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Sparse Matrix Completion
Golden standard: Low-rank approximation of

a matrix from its sparse observations.

Matrix co-completion for multi-label 
classification with missing features and labels.

Clipped matrix factorization for ceiling effect.
 Allowing values taking beyond their upper-limits 

improves the recovery accuracy.
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Xu, Niu, Han, Tsang, Zhou
& Sugiyama (arXiv2018)Feature  |  Soft labels

Teshima, Xu, Sato
& Sugiyama (AAAI2019)



Domain Adaptation (DA)

Unsupervised DA: source labeled and 
target unlabeled data

Concern: If source- and target-data 
distributions are completely different, 
DA does not work.
 How to measure distribution discrepancy 

is the key!

Proposal: New discrepancy measures
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Kuroki, Charoenphakdee, Bao, Honda, Sato & Sugiyama (AAAI2019)
Lee, Charoenphakdee, Kuroki & Sugiyama (arXiv2019)



My Talk

1. Weakly supervised classification

2. Robust learning

3. More

28



Summary

Many problems are waiting to be solved!
 Need better theory, algorithms, software, hardware, 

researchers, engineers, business models, ethics…

Learning from imperfect information:
 Weakly supervised/noisy training data

 Reinforcement/imitation learning, bandits

Reliable deployment of ML systems:
 Changing environments, adversarial test inputs

 Bayesian inference

Versatile ML:
 Density ratio/difference/derivative
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