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Nearest Neighbors

ÅSimilar data share similar properties

2

: class 1

: class 2

(= Labels?)

(= Behavior)
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x 0

p1(x) p2(x)

Data space

x N N

, uniformly with increasing N.

In the limit, &

For classification as an example:

[T. Cover and P. Hart, IEEE TIT, 1967]
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Applications of Using Nearest Neighbors

ÅPrediction using k-Nearest Neighbor 

Information

ïk-Nearest Neighbor Classification

ïk-Nearest Neighbor Regression

ÅEstimation using k-Nearest Neighbor 

Information

4

: class 1

: class 2

is a distance to the nearest 

neighbor in class c from    .

[Leonenko, N., Pronzato, L., & Savani, V., 2008]
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Similar Formulations

ÅNadaraya-Watson estimator for kernel 

classification/regression
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Kernel weight with respect to the distance

bandwidth
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Bias Analysis

Åk-Nearest Neighbor Classification

6

[R. R. Snapp et al. The Annals of Statistics, 1998]

[Y.-K. Noh et al. IEEE TPAMI, 2018]

: Asymptotic NN Error

: Residual due to Finite Sampling .

̌

̌
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Change of Metric
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z = L > x~p

~p

[Y.-K. Noh et al. IEEE TPAMI, 2018]

Euclidean metric Optimal metric
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Nearest Neighbor Classification with Metric
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20% increase

[Y.-K. Noh et al. IEEE TPAMI, 2018]

 Obtain from generative modelsr 2 p1 ; r 2 p2 ; p1 ; p2
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Bandwidth and Nadaraya-Watson 
Regression
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Bias Analysis

Åk-Nearest Neighbor Classification

ÅBias
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→Minimizes mean square error (MSE)

→Metric independent asymptotic property

E [by(x)¶y(x)] = h2

+
r >p(x )r y(x)

p(x )
+

r 2y(x)

2

,

+ o(h4)
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For x & y Jointly Gaussian

ÅLearned metric is not sensitive to the bandwidth
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[Y.-K. Noh, et al., NeurIPS, 2017]
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[Y.-K. Noh, et al., NeurIPS, 2017]
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Variance Reduction is Not Critical 
in High -Dimensions
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Proposition 

Reducing the variance is not important in a high dimensional 

space once the bias is minimized and the bandwidth selection is 

followed.

[Y.-K. Noh, et al., NeurIPS, 2017]
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Information -theoretic Measure Estimation
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Metric invariant

Metric dependent

= 

is a distance to the nearest neighbor in 

class c from    .
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Increase the KL-Divergence of Two 
Gaussians and its Estimation
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[Y.-K. Noh, et al., NeCo, 2018]
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MAKING GENERAL ESTIMATORS 

FOR F-DIVERGENCES

16



Seoul National University

Estimation of the General f-Divergences

ÅShannon Entropy Estimation

17

[D. Lombardi and S. Pant, Phys. Rev. E, 2016]

[A. Kraskov, H. Stögbauer, and P. Grassberger, Phys. Rev. E, 2004]

,

Note that d

In this case, 
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Density Estimator and Entropy Estimator

ÅLoftsgaarden and Quesenberry (1965)

ÅShannon Entropy Estimator

18
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Historical Remarks of Making Plug -in Estimators
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Plug-in and correction

[N. Leonenko, L. Pronzato, &V. Savani, Annals of Statistics, 2008]

[B. Poczos and J. Schneider, AISTATS, 2011]

Plug-in and correction

Rényi and Tsallis entropies

Shannon entropy

[Moon, K. & Hero, A., 2014] considers the general 

f-divergence plug-in estimator
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Plug-in Nearest Neighbor f-divergence 
Estimator

ÅKullback-Leibler Divergence

ÅTsallis-alpha Divergence

20
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Plug-in methods do not work for 
general f-divergences

21

Cover

[Noh, Y.-K. Ph.D. thesis, 2011]

Plug-in estimator

[Cover, T., 1968]

True f-divergence

Nearest neighbor 

classification

[Cover, T., 1968]
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Obtaining the General f-Divergence 
Estimator

22

Inverse Laplace Transform
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arXiv:1805.08342
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Summary

ÅAsymptotically, nearest neighbor methods are 

very nice. (In terms of Theory!!)

ÅWith finite samples, bias treatment using 

geometry change can improve the 

conventional nonparametric methods 

significantly (in high-dimensional space).

ÅGeneral and systematic way of obtaining f-

divergence using nearest neighbor 

information.
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