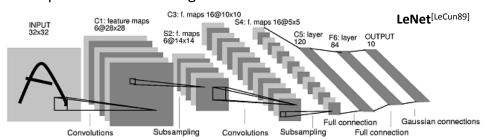
Deconvolutions in Convolutional Neural Networks

Bohyung Han
bhhan@postech.ac.kr
Computer Vision Lab.

Convolutional Neural Networks

Overview


- Convolutional Neural Networks (CNNs)
- Deconvolutions in CNNs
- Applications
 - Network visualization and analysis
 - Object generation
 - Semantic segmentation
- Disclaimer
 - This talk may not be a comprehensive presentation about deconvolutions in convolutional neural networks.
 - It is limited to computer vision applications.

Deconvolutions in Convolutional Neural Network By Prof. Bohyung Har

Convolutional Neural Network (CNN)

- Feed-forward network
 - Convolution
 - Non-linearity: Rectified Linear Unit (ReLU)
 - Pooling: (typically) local maximum
- Supervised learning
- Representation learning

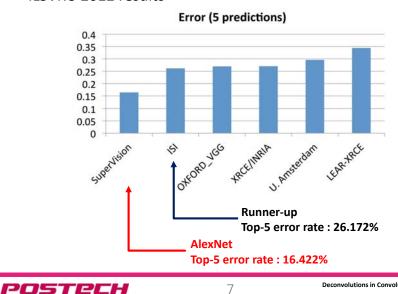
[Lecun89] Y. LeCun et al.: Handwritten Digit Recognition with a Back-Propagation Network. NIPS 1989

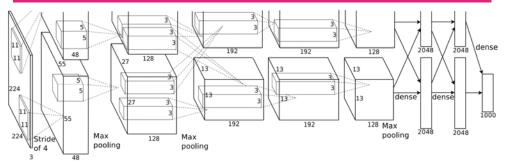
Convolutional Neural Network (CNN)

CNN had not shown impressive performance.

- Reasons for failure
 - Insufficient training data
 - Slow convergence
 - · Bad activation function: Sigmoid function
 - Too many parameters
 - · Limited computing resources
 - Lack of theory: needed to rely on trials-and-errors

CNN recently draws a lot of attention due to its great success.


- Reasons for recent success
 - Availability of larger training datasets, e.g., ImageNet
 - Powerful GPUs
 - Better model regularization strategy such as dropout
 - Simple activation function: ReLU

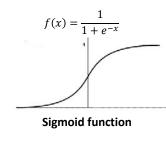

Deconvolutions in Convolutional Neural Networks

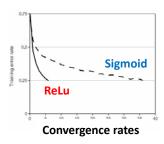
AlexNet[Krizhevsky12]

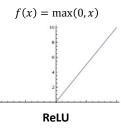
ILSVRC-2012 results

AlexNet^[Krizhevsky12]

- Winner of ILSVRC 2012 challenge
 - Same architecture with [Lecun89] but trained with larger data
 - Bigger model: 7 hidden layers, 650K neurons, 60 million parameters
 - Trained on 2 GPUs for a week
 - Training with error back-propagation using stochastic gradient method

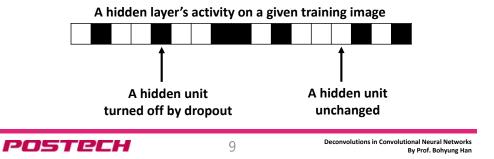

[Krizhevsky12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012

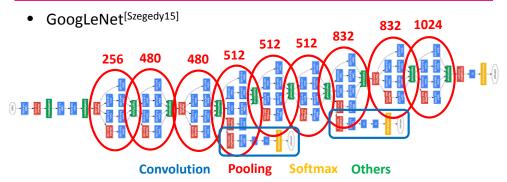



By Prof. Bohyung Har

Main Reasons for Success

- Improving training speed
 - New activation function: Rectified Linear Unit (ReLU)




- Optimization techniques
 - Use of high-performance GPUs
 - Stochastic gradient method with mini-batches
 - · Optimized library, e.g., Caffe

Main Reasons for Success

- Dropout: reducing overfitting problem
 - Setting to zero the output of each hidden neuron with probability 0.5
 - Employed in the first two fully-connected layers
 - Simulating ensemble learning without additional models
 - Every time an input is presented, the neural network samples a different architecture.
 - But, all these architectures share weights.
 - At test time, we use all the neurons but multiply their outputs by 0.5.

Other CNNs for Classification

- Network in network
- Hebbian principle: Neurons that fire together, wire together
- Inception modules
- The winner of ILSVRC 2014 classification task

[Szegedy15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich: **Going deeper with convolutions**. CVPR 2015

11

POSTECH

Other CNNs for Classification

• Very Deep ConvNet by VGG^[Simonyan15]

- Smaller filters: 3x3
 - More non-linearity
 - Less parameters to learn: ~140 millions
- A significant performance improvement with 16–19 layers
- Generalization to other datasets
- The first place for localization and the second place for classification in ILSVRC 2014

[Simonyan15] K. Simonyan, A. Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

10

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

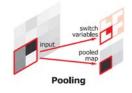
Deconvolution Networks

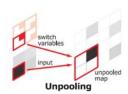
Deconvolution Networks

- Generative convolutional neural network
- Advantages
 - Capable of structural prediction
 - Segmentation
 - Matching
 - Object generation
 - Others
 - More general than classification: extending applicability of CNNs
- Challenges
 - More parameters
 - · Difficult to train
 - · Requires more training data, which may need heavy human efforts
 - Task specific network: typically not transferrable

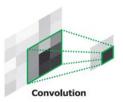
Decon

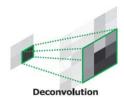
econvolutions in Convolutional Neural Networ By Prof. Bohyung Ha


Deconvolution Papers in Computer Vision


13

- Visualization and analysis of CNNs
 - M. Zeiler, G. W. Taylor and R. Fergus, Adaptive Deconvolutional Networks for Mid and High Level Feature Learning, ICCV 2011
 - M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks. ECCV 2014
- Object generation
 - A. Dosovitskiy, J. T. Springenberg and T. Brox. Learning to generate chairs with convolutional neural networks. CVPR 2015
- Semantic segmentation
 - J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Network for Semantic Segmentation. CVPR 2015
 - H. Noh, S. Hong, and B Han, Learning Deconvolution Network for Semantic Segmentation, arXiv:1505.04366, 2015
 - S. Hong, H. Noh, and B. Han, Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation, arXiv:1506.04924, 2015


Operations in Deconvolution Network


- Unpooling
 - Place activations to pooled location
 - Preserve structure of activations

- Deconvolution
 - The size of output layer is larger than that of input.
 - Densify sparse activations
 - Conceptually similar to convolution
 - Bases to reconstruct shape

- ReLU
 - Same with convolution network

14

Deconvolutions in Convolutional Neural Networks
By Prof. Bohyung Han

Analysis of Convolutional Neural Networks

Questions in CNNs

- Despite encouraging progress
 - There is still little insight into the internal operation and behavior of these complex models
 - How CNNs achieve such good performance Without clear understanding of CNNs, the development of better models is reduced to trial-and-error.
- Visualization of CNNs
 - Reveals the input stimuli that excite individual feature maps at any laver in the model.
 - Allows us to observe the evolution of features during training and to diagnose potential problems with the model

POSTPCH

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

Visualizing CNNs

- Main idea
 - Mapping activations at high layers back to the input pixel space
 - Showing what input patterns originally caused a given activation in the feature maps
- Deconvnet
 - Originally proposed as a way of unsupervised learning method [Zeiler11]
 - Used as a probe: no inference, no learning
- Same operations as CNNs, but in reverse
 - Unpool feature maps
 - Convolve unpooled maps

[Zeiler11] M. Zeiler, G. Taylor, and R. Fergus: Adaptive Deconvolutional Networks for Mid and High

[Zeiler14] M. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks. ECCV 2014

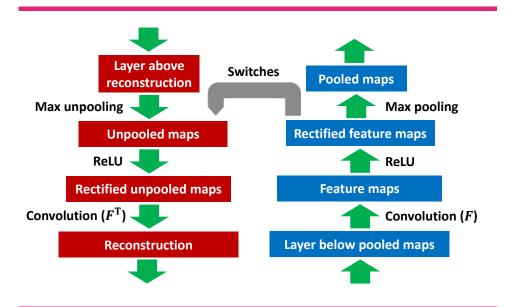
Level Feature Learning. ICCV 2011

18

By Prof. Bohyung Han

Feature maps

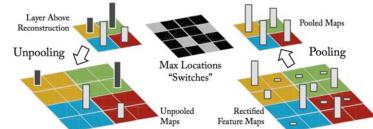
Unpooling

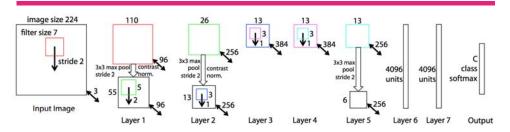

Non-linearity

Convolution (learned)

Input Image

Visualization with Deconvnet


17


19

Visualization with Deconvnet

- Unpooling
 - Approximate inverse: Max pooling operation is non-invertible
 - Switch variables: recording the locations of maxima
- Rectification by ReLU: ensuring the positivity of feature maps
- Filtering
 - Using transposed filters as other autoencoder models
 - Flipping each filter vertically and horizontally, in practice

Training Details


- Similar architecture to AlexNet
 - Smaller filter in the 1st layer and smaller stride
 - Determined through visualization of trained model
 - Dropout with a rate of 0.5 for the fully connected layers
- Data and optimization
 - 10 different sub-crops of size 224x224 from 256x256 image
 - Stochastic gradient descent with a mini-batch size of 128

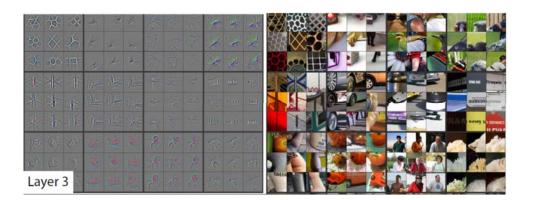
21

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

Layer1: Top 9 Patches

Layer1 Filters

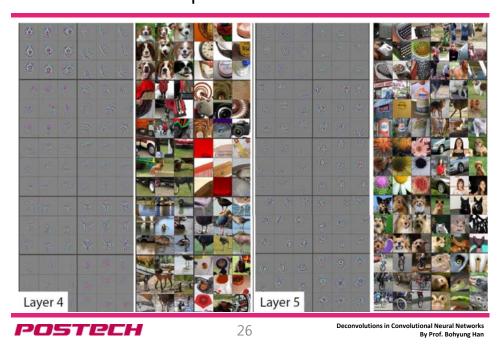
POSTECH


22

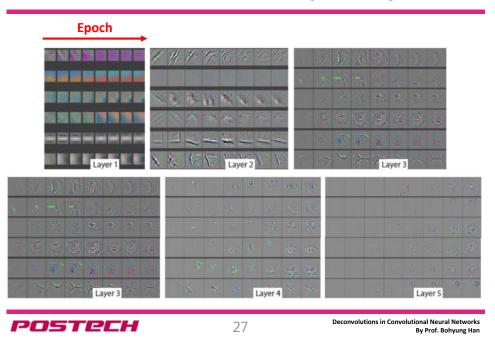
Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

Top 9 Activations

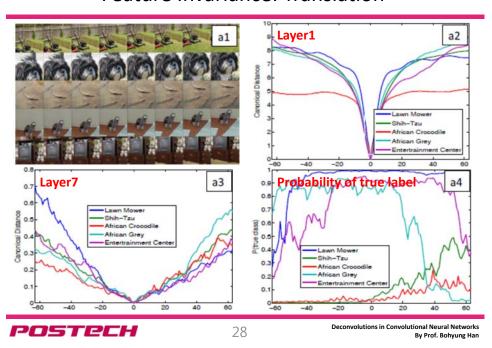
Top 9 Activations

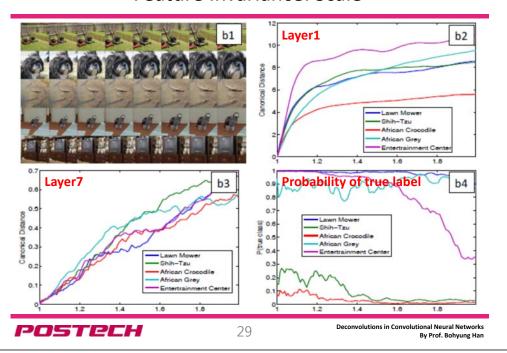


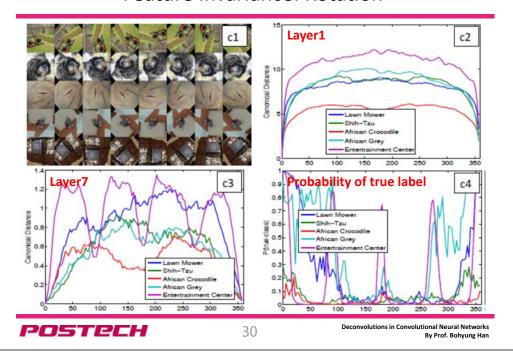
POSTECH

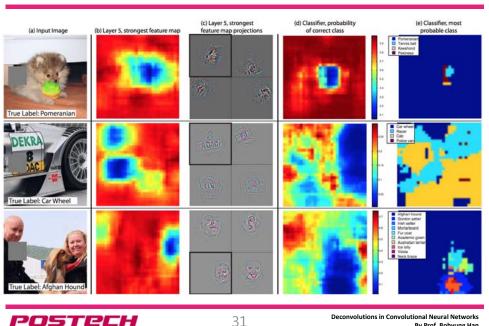

Deconvolutions in Convolutional Neural Networks

By Prof. Bohyung Han

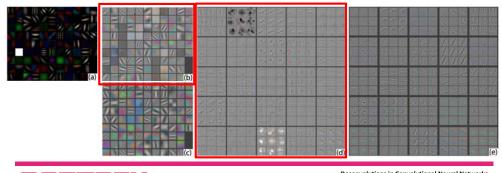

Top 9 Activations


Feature Evolution during Training


Feature Invariance: Translation


Feature Invariance: Scale

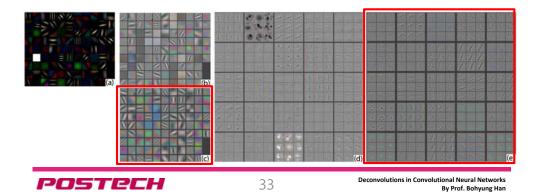
Feature Invariance: Rotation



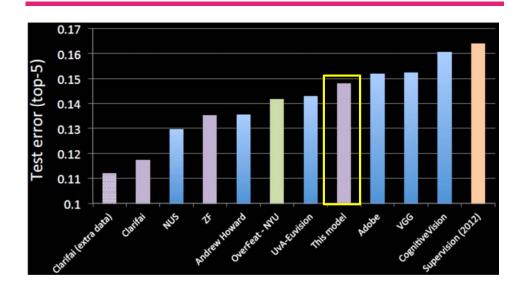
Occlusion Sensitivity

Architecture Selection

- Observations from AlexNet
 - The 1st layer filters
 - A mix of extremely high and low frequency information
 - Little coverage of the mid frequencies.
 - The 2nd layer visualization: aliasing artifacts caused by the large stride 4 used in the 1st layer convolutions.



Architecture Selection


Model revisions

- Reducing the 1st layer filter size from 11x11 to 7x7
- Making the stride of the convolution 2, rather than 4.

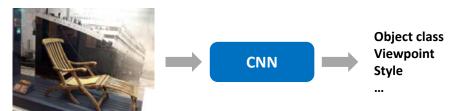
These updates lead to classification performance improvement.

ILSVRC 2013 Results

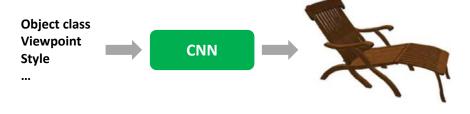
Performance in ILSVRC 2012 Dataset

	Val	Val	Test		
Error %	Top-1	Top-5	Top-5		
Gunji et al. [12]	-	-00	26.2		
DeCAF [7]	-	-	19.2		
Krizhevsky et al. [18], 1 convnet	40.7	18.2			
Krizhevsky et al. [18], 5 convnets	38.1	16.4	16.4		
Krizhevsky et al. *[18], 1 convnets	39.0	16.6			
Krizhevsky et al. *[18], 7 convnets	36.7	15.4	15.3		
Our replication of					
Krizhevsky et al., 1 convnet	40.5	18.1			
1 convnet as per Fig. 3	38.4	16.5			
5 convnets as per Fig. 3 – (a)	36.7	15.3	15.3		
1 convnet as per Fig. 3 but with					
layers 3,4,5: 512,1024,512 maps – (b)	37.5	16.0	16.1		
6 convnets, (a) & (b) combined	36.0	14.7	14.8		

34



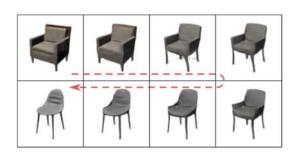
Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han


Object Generation

Discriminative vs. Generative CNN

Discriminative CNN

Generative CNN


POSTECH

37

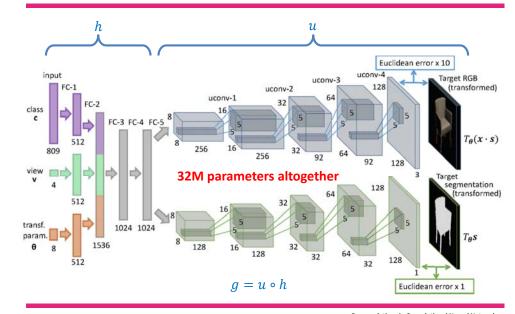
Deconvolutions in Convolutional Neural Netwo By Prof. Bohyung H

Contribution

- Knowledge transfer
 - Given limited number of viewpoints of an object, the network can use the knowledge learned from other similar objects to infer remaining viewpoints.
- Interpolation between different objects
 - Generative CNN learns the manifold of chairs.

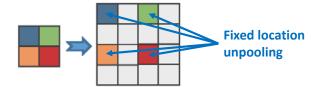
- Generate an obejct based on high-level inputs such as
 - Class
 - Orientation with respect to camera
 - Additional parameters
 - Rotation, translation, zoom
 - Stretching horizontally or vertically
 - Hue, saturation, brightness

[Dosovitskiy15] A. Dosovitskiy, J. T. Springenberg and T. Brox. Learning to generate chairs with convolutional neural networks. CVPR 2015

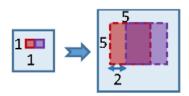


38

Deconvolutions in Convolutional Neural Networks


By Prof. Bohyung Han

Network Architecture



Operations

• Unpooling: 2x2

Deconvolution: 5x5

ReLU

41

Deconvolutions in Convolutional Neural Networks

Training

- Objective function
 - Minimizing the Euclidean error in 2D of reconstructing the segmentedout chair image and the segmentation mask

$$\min_{\boldsymbol{W}} \sum_{i=1}^{N} \lambda \left\| u_{\text{RGB}} \left(h(\boldsymbol{c}^{i}, \boldsymbol{v}^{i}, \boldsymbol{\theta}^{i}) \right) - T_{\boldsymbol{\theta}^{i}} (\boldsymbol{x}^{i} \cdot \boldsymbol{s}^{i}) \right\|_{2}^{2} + \left\| u_{seg} \left(h(\boldsymbol{c}^{i}, \boldsymbol{v}^{i}, \boldsymbol{\theta}^{i}) \right) - T_{\boldsymbol{\theta}^{i}} \boldsymbol{s}^{i} \right\|_{2}^{2}$$

- Optimization
 - Stochastic gradient descent with momentum of 0.9
 - Learning rate
 - 0.0002 for the first 500 epochs
 - Dividing by 2 after every 100 epoch
 - Orthogonal matrix initialization^[Saxe14]

[Saxe14] A. M. Saxe, J. L. McClelland, and S. Ganguli, learning a Nonlinear Embedding by Preserving Class Neighbourhood. ICLR 2014

Data

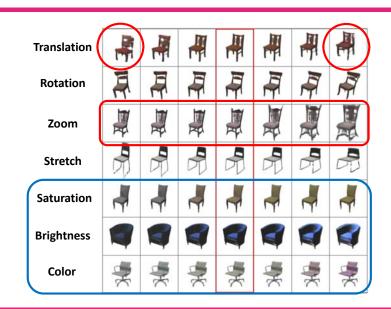
- Using 3D chair model dataset^[Aubry14]
 - Original dataset: 1393 chair models, 62 viewpoints, 31 azimuth angles, 2 elevation angles
 - Sanitized version: 809 models, tight cropping, resizing to 128x128
- Notation

•
$$D = \{(c^1, v^1, \theta^1), (c^2, v^2, \theta^2), \dots, (c^N, v^N, \theta^N)\}$$

- c: class label
- ν: viewpoint
- θ : additional parameters

•
$$0 = \{(x^1, s^1), (x^2, s^2), ..., (x^N, s^N)\}$$

- x: target RGB output image
- s: segmentation mask


[Aubry14] M. Aubry, D. Maturana, A. Efros, and J. Sivic, Seeing 3D Chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of CAD Models. CVPR 2014

42

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

Network Capacity

Learned Filters

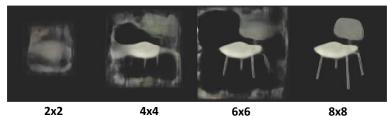
• Visualization of uconv-3 layer filters in 128x128 network

RGB stream

Segmentation stream

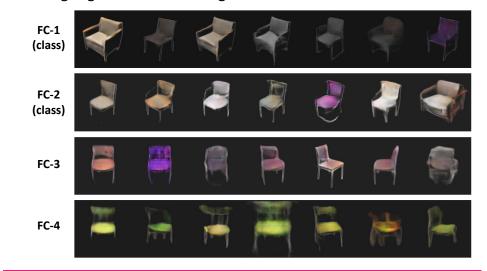
- Facts and observations
 - The final output at each position is generated from a linear combination of these filters.
 - They include edges and blobs.

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han


Hidden Layer Analysis

45

- Zoom neuron
 - Increasing activation of the "zoom neuron" found in FC-4 feature map


- Spatial mask
 - Chairs generated from spatially masked 8x8 FC-5 feature map

POSTECH

Single Unit Activation

• Images generated from single unit activations

POSTECH

46

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

Interpolation between Angles


48

With knowledge transfer

Without knowledge transfer

Morphing Different Chairs

49

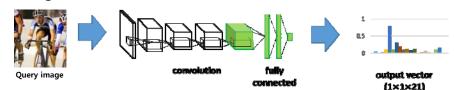
POSTECH

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

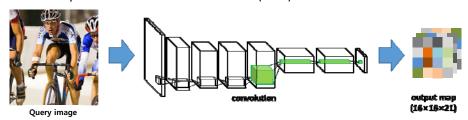
Semantic Segmentation

Summary

- Supervised Training of CNN can also be used to generate images.
- Generative network does not merely learn, but also generalizes well.
- The proposed network is capable of processing very different inputs using the same standard layers.

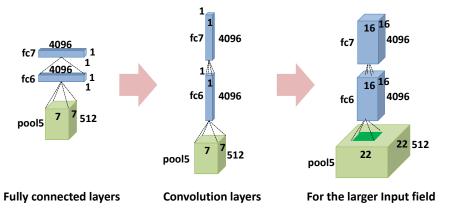


50


Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

Semantic Segmentation using CNN

• Image classification

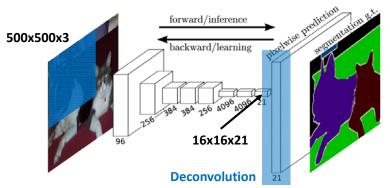

- Semantic segmentation
 - Given an input image, obtain pixel-wise segmentation mask using a deep Convolutional Neural Network (CNN)

Fully Convolutional Network (FCN)

- Converting fully connected layers to convolution layers
 - Each fully connected layer is interpreted as a convolution with a large spatial filter that covers entire input field

POSTECH

POSTECH


53

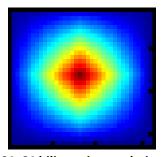
Deconvolutions in Convolutional Neural Networks

By Prof. Bohyung Han

FCN for Semantic Segmentation

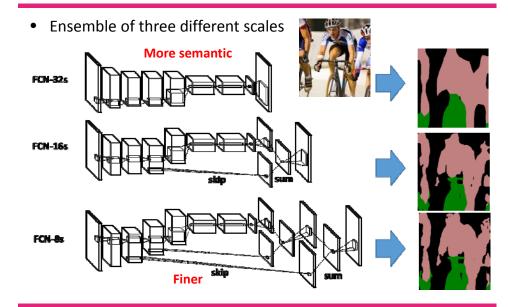
- Network architecture^[Long15]
 - End-to-End CNN architecture for semantic segmentation
 - Convert fully connected layers to convolutional layers

[Long15] J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Network for Semantic Segmentation. CVPR 2015


POSTECH

54

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

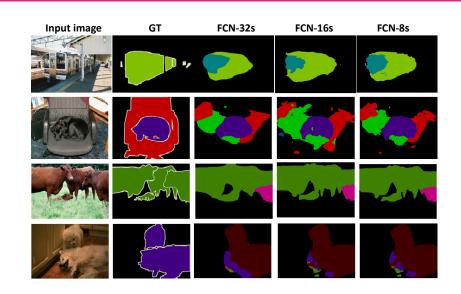

Deconvolution Filter

- Bilinear interpolation filter
 - Same filter for every class
 - There is no learning!
 - Not a real deconvolution
- How does this deconvolution work?
 - Deconvolution filter is fixed.
 - Fining-tuning convolution layers of the network with segmentation ground-truth.

64x64 bilinear interpolation

Skip Architecture

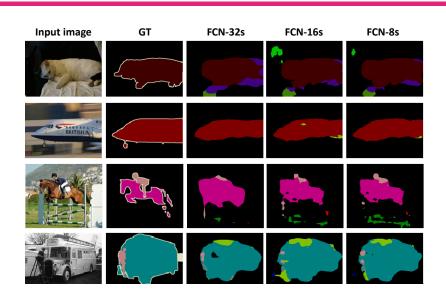
Limitations of FCN-based Semantic Segmentation


- Coarse output score map
 - A single bilinear filter should handle the variations in all kinds of object classes.
 - Difficult to capture detailed structure of objects in image
- Fixed size receptive field
 - Unable to handle multiple scales
 - Difficult to delineate too small or large objects compared to the size of receptive field
- Noisy predictions due to skip architecture
 - Trade off between details and noises
 - Minor quantitative performance improvement

POSTECH

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

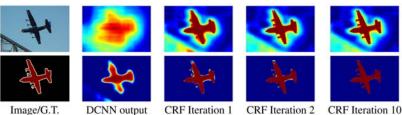
Results and Limitations



POSTECH

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

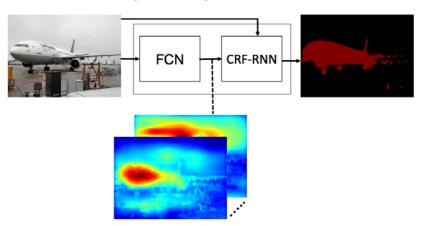
Results and Limitations


57

DeepLab-CRF

58

- A variation of FCN-based semantic segmentation^[Chen15]
 - Hole algorithm: denser output production from 16x16 to 39x39
 - Post processing based on Conditional Random Field (CRF)

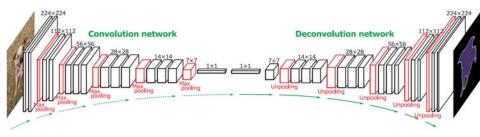

- Characteristics
 - No skip architecture in basic model
 - Simple output score map upscaling without deconvolution layer

[Chen15] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. ICLR 2015

CRF-RNN

• End-to-end learning CRF using recurrent neural network

[Zheng2015] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr, Conditional Random Fields as Recurrent Neural Networks, arXiv:1502:03240, 2015

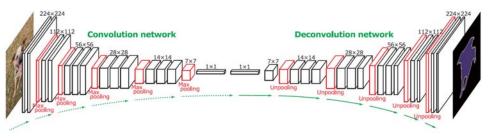


61

By Prof. Bohyung Han

DeconvNet for Semantic Segmentation

- Instance-wise training and prediction
 - Easy data augmentation
 - Reducing solution space
 - Inference on object proposals, then aggregation
 - Labeling objects in multiple scales



Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han, Learning Deconvolution Network for Semantic **Segmentation**, arXiv:1505.04366, 2015

DeconvNet for Semantic Segmentation

- Learning a deconvolution network
 - Conceptually more reasonable
 - Better to identify fine structures of objects
 - Designed to generate outputs from larger solution space
 - Capable of predicting dense output scores
 - Difficult to learn: memory intensive

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han, Learning Deconvolution Network for Semantic **Segmentation**, arXiv:1505.04366, 2015

62

By Prof. Bohyung Han

Why Not Trying Deconvolution?

- Too many parameters
 - Approximately 252M parameters in total
 - Involves large output space
 - Twice as many as VGG 16-layer net^[Simonyan15]
 - Potentially requires a large dataset
 - Difficult to obtain annotated data for semantic segmentation
 - Needs large GPU memory

Is it really difficult to train deconvolution network for semantic segmentation?

[Simonyan15] K. Simonyan and A. Zisserman: Very Deep Convolutional Neural Networks for Large-Scale Image Recognition. ICLR 2015

Training Strategy

- Data augmentation
 - Training per proposal: also reduces the size of output space
 - Random cropping and horizontal flipping
- Progressive training
 - First stage
 - Training with object ground-truth bounding boxes: 0.2M examples
 - Binary annotation
 - Second stage
 - Training with real object proposals: 2.7M examples
 - Annotation of all available labels
 - This approach makes the network generalize better.

Deconvolutions in Convolutional Neural Networks

Challenge in Training

65

- Internal-covariate-shift
 - Input distributions in each layer change over iteration during training as the parameters of its previous layers are updated.
 - Problematic in optimizing very deep networks since the changes in distribution are amplified through propagation across layers
- Batch Normalization[loffe15]
 - Normalize each input channel in a layer to standard Gaussian distribution
 - Prevent drastic changes of input distribution in upper layers
 - A batch normalization layer is added to the output of every convolutional and deconvolutional layer

[loffe15] S. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML 2015

Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

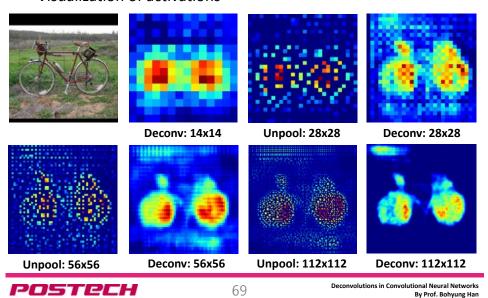
Training Strategy

- New GPU: NVIDIA GeForce GTX Titan X
 - Maxwell GPU architecture
 - 3072 CUDA cores
 - 1000MHz base clock / 1075MHz boost clock
 - 12G memory

POSTECH

66

Training Details


- Initialization
 - Convolution network: VGG 16-layer net trained on ImageNet
 - Deconvolution network: zero mean Gaussians
- Optimization
 - Learning rates
 - Initial values: 0.01
 - Reduce learning rate in an order of magnitude whenever validation accuracy does not improve
 - Mini-batch size: 64
 - Convergence
 - 20K and 40K SGD iterations for the first and second stage training, respectively

68

Takes approximately 2 and 4 days in the stages.

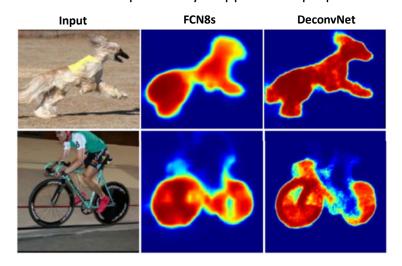
How Deconvolution Network Works?

Visualization of activations

Inference

• Instance-wise prediction

1. Input image

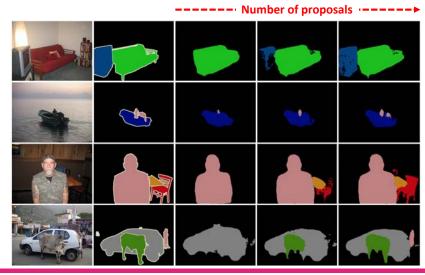

2. Object proposals 3. Prediction and aggregation

4. Results

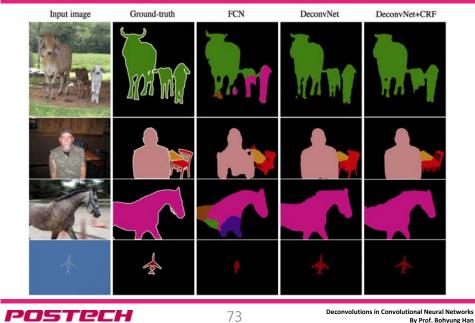
- Inference on object proposals
 - Each class corresponds to one of the channels in the output layer.
 - Label of a pixel is given by max operation over all channels.
- Aggregation of object proposals
 - Max operation with all proposals overlapping on each pixel
 - Number of proposals: not sensitive to accuracy
 - 50 proposals for evaluation

How Deconvolution Network Works?

• Would FCN work equivalently if applied to a proposal?


POSTECH

70


Deconvolutions in Convolutional Neural Networks By Prof. Bohyung Han

Inference

Handling multi-scale objects naturally

Results

By Prof. Bohyung Han

Results

PASCAL VOC 2012 Leaderboard

	mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant
A L L L L L L L L L L L L L L L L L L L	76.4	91.8	39.3	82.0	66.3	37.7		83.6		39.1		3.7	- 7	87.4	83.7	84.7	66.2
Adelaide_Context_CNN_CRF_COCO [7]	75.2	89.8			68.9			83.0		34.4		67.1		83.7	85.2	83.5	58.6
MSRA_BoxSup [7]	1000000		1956		2000	100000		0606656	13/10000	2000	Production of the last of the	35011	-	- 222	24000	700	
POSTECH_DeconvNet_CRF_VOC [7]	74.8	90.0	40.8		67.3	-	-	84.8		34.8	83.0	58.7		87.1	86.9	82.4	64.5
Oxford_TVG_CRF_RNN_COCO [7]	74.7	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6
Adelaide_Message_Learning_VOC [7]	74.3	89.9	38.0	79.2	64.5	76.1	89.6	84.5	86.8	37.5	80.4	57.0	83.1	84.2	83.8	83.2	58.5
DeepLab-MSc-CRF-LargeFOV-COCO-CrossJoint [7]	73.9	89.2	46.7	88.5	63.5	68.4	87.0	81.2	86.3	32.6	80.7	62.4	81.0	81.3	84.3	82.1	56.2
Adelaide_Context_CNN_CRF_VOC [7]	72.9	89.7	37.6	77.4	62.1	72.9	88.1	84.8	81.9	34.4	80.0	55.9	79.3	82.3	84.0	82.9	59.
DeepLab-CRF-COCO-LargeFOV [7]	72.7	89.1	38.3	88.1	63.3	69.7	87.1	83.1	85.0	29.3	76.5	\$6.5	79.8	77.9	85.8	82.4	57.
POSTECH_EDeconvNet_CRF_VOC [7]	72.5	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.
Oxford_TVG_CRF_RNN_VOC [7]	72.0	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.
DeepLab-MSc-CRF-LargeFOV [7]	71.6	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83,2	80.8	59.
MSRA_BoxSup [7]	71.0	86.4	35.5	79.7	65.2	65.2	84.3	78.5	83.7	30.5	76.2	62.6	79.3	76.1	82.1	81.3	57.0
DeepLab-CRF-COCO-Strong [7]	70.4	85.3	36,2	84.8	61.2	67.5	84.6	81.4	81.0	30.8	73,8	53.8	77.5	76.5	82.3	81.6	56.
DeepLab-CRF-LargeFOV [7]	70.3	83.5	36.6	82.5	62.3	66.5	85.4	78.5	83.7	30.4	72.9	60.4	78.5	75.5	82.1	79.7	58.2
TTI_zoomout_v2 [7]	69.6	85.6	37.3	83.2	62.5	66.0	85.1	80.7	84.9	27.2	73.2	57.5	78.1	79.2	81.1	77.1	53.6
DeepLab-CRF-MSc [7]	67.1	80.4	36.8	77.4	55.2	66.4	81.5	77.5	78.9	27.1	68.2	52.7	74.3	69.6	79.4	79.0	56.9
DeepLab-CRF [7]	66.4	78.4	33.1	78.2	55.6	65.3	81.3	75.5	78.6	25.3	69.2	52.7	75.2	69.0	79.1	77.6	54.
CRF_RNN [7]	65.2	80.9	34.0	72.9	52.6	62.5	79.8	76.3	79.9	23.6	67.7	51.8	74.8	69.9	76.9	76.9	49.0
TTI_zoomout_16 [7]	64.4	81.9	35.1	78.2	57.4	56.5	80.5	74.0	79.8	22.4	69.6	53.7	74.0	76.0	76.6	68.8	44.3
Hypercolumn [7]	62.6	68.7	33.5	69.8	51.3	70.2	81.1	71.9	74.9	23.9	60.6	46.9	72.1	68.3	74.5	72.9	52.6
FCN-8s [7]	62.2	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.

Contribution

- Confirmation of some conjectures
 - Deconvolution network is conceptually reasonable.
 - Learning a deep deconvolution network is a feasible option for semantic segmentation.
- Presenting a few critical training strategies
 - Data augmentation
 - Multi-stage training
 - Batch normalization
- Very neat formulation
- Good performance
 - Best in all algorithms trained on PASCAL VOC dataset
 - The 3rd overall

Concluding Remark

77

Deconvolutions in CNNs

- Useful for structured predictions
 - 2D/3D object generation
 - Semantic segmentation
 - Human pose estimation
 - Visual tracking
 - ..
- More parameters but trainable
- Having a lot of potential and applications

POSTECH

78

Deconvolutions in Convolutional Neural Networks

