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Lecturer Introduction 
Works on the intersection between Computer Vision and Machine Learning 

A Unified Semantic Embedding: 
Relating Taxonomies with Attributes, 
NIPS 2014 

Analogy Preserving Semantic Embedding for Visual 
Object Categorization, ICML 2013 

Semantic Kernel Forests from Multiple 
Taxonomies,NIPS 2012 

Learning a Tree of Metrics with Disjoint Visual 
Features, NIPS 2011 

Sharing Features between Objects and Their 
Attributes,CVPR 2011 

Expanding Object Detector’s Horizon: 
Incremental Learning Framework for 
Object Detection in Videos, CVPR 2015 



Lecture Note Update 
http://sjhwang.unist.ac.kr/sparsity.pdf 



Current Research Interests 
Learning Semantics  

- How can we learn high-level semantic knowledge from the given visual and 
textual data, such that machine’s understanding of the world aligns well with how 
we understand the world? 

 

Interactive Learning 

- How can we build a learning model such that machines learn from interacting 
with humans? 

 

Lifelong Learning 

- How can we learn a model that can basically learn forever, while transferring 
knowledge obtained at earlier stages to the learning for later ones? 



Part 1: General Sparsity 

• Background: Optimization 

• Regularizations 

• Sparsity 

• Sparsity-inducing Regularization 

• Example: lasso 

• Numerical optimization – proximal methods 

• Alternative sparse methods 

• Example: Image restoration 

• Example: Self-taught learning  



Background: Mathematical Optimization 
Selection of the values that minimize/maximize a given function 

minimize  𝑓0 𝑤  
subject to  𝑓𝑖 𝑤 ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑚 

𝑤 = (𝑤1, … , 𝑤𝑛)   optimization variables 

𝑓0: 𝑅
𝑛 → 𝑅    objective function 

𝑓𝑖: 𝑅
𝑛 → 𝑅, 𝑖 = 1,… ,𝑚  constraints function 

We want to find the optimal solution 𝑤∗that has the smallest value of 𝑓0 among all 
vectors that satisfy the constraints. 

min
w

 𝑓0 𝑤  

s.t.  𝑓𝑖 𝑤 ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑚 



Background: Convex Functions 
𝑓: 𝑅𝑛 → 𝑅 is convex if dom 𝑓 is a convex set and  
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓(𝑦) 

 

   

Has a unique global minimum. 

𝑓 is concave if −𝑓 is convex 

𝑥, 𝑓 𝑥  
𝑦, 𝑓 𝑦  



Regularization 

Introduction of bias to better condition the target problem with additional information 

min
𝑤

𝑓 𝒘 + 𝜆Ω 𝒘  

min
𝑤
 𝑙(𝑿, 𝒚,𝒘)+ 𝜆Ω 𝒘  

For machine learning, regularization is often used to prevent overfitting. 

feature 

parameter, weight 

label regularization parameter 



Regularization 

L2 regularizations, based on 2 norm, is one the most common types of regularizations 

min
𝑤
 𝑙(𝑿, 𝒚,𝒘)+

𝜆

2
𝒘 2

2 

𝒘 2 =  𝑤𝑗
2

𝑤𝑗

 

Shrinks the value of the variables while favoring similar weights among them 

Minimum for the loss 

 

Loss function contour 

 



Sparsity 

This is a measure of how many of the variables are non-zero.  

L0-regularization results in learning sparse models, by selecting variables 

We define the L0-psuedonorm as follows:  

𝒘 0 = # 𝑖 = 1,… , 𝑝  𝑤𝑖 ≠ 0} 
𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 



Why is Sparsity Good? 

Feature selection - Identifies features that are truly relevant to the target task. 

 

Useful for high-dimensional learning and data-driven methods 



Why is Sparsity Good? 

Better Interpretability – The learned model can be better explained in terms of 
selected non-zero entries. 

[Hwang et al.] S. J. Hwang and L. Sigal, A Unified Semantic Embedding: Relating Taxonomies with Attributes, NIPS 2014 



Why is Sparsity Good? 

Model compression – With most of the parameters set to zero, sparsity can greatly 
reduce the memory and computational requirements. 

 

8x8 matrix – requires 512 bytes to store in 
double precision 

 

12 nonzero entries – requires 96 bytes + 
additional memory to store indices. 

 



L0-regularization 

Are there more efficient ways to obtain sparse models? 

Directly solving for L0-regularization is difficult as it should try all possible subsets of 
variables. 

𝒘 0 = # 𝑖 = 1,… , 𝑝  𝑤𝑖 ≠ 0} 

min
𝑤
 𝑙(𝑿, 𝒚,𝒘)+𝜆 𝒘 0 

𝑤1  

𝑤2  



L1 regularization 

Convex relaxation of L0 regularization. 

min
𝑤
 𝑙(𝑿, 𝒚,𝒘)+𝜆 𝒘 1 

𝒘 1 = 𝑤𝑗
𝑤𝑗

 

Minimum for the loss 

Solution is found at the “corners” 

 

As the dimensionality of w increases, the norm ball will have increasingly more 
number of corners. 

Results in parameter selection 

 

 

 

𝒘 1 ≤ 𝜆 



L2- vs L1-regularization 
L2 regularization promotes grouping – results in equal weights for correlated features 

L1 regularization promotes sparsity – selects few informative features 

Ω 𝒘 =
1

2
𝒘 2

2 Ω 𝒘 = 𝒘 1 

L2-regularization L1-regularization 



Lp-Norms 

General case 𝒘 p where p can be any non-negative number 

Lp norms with p < 2 promotes sparsity 

Lp norms with p > 2 promotes grouping 



Example: Linear Regression 

Fit a linear model 𝒘, that minimizes the residual between the observed and 
predicted values 

min
𝑤

1

𝑁
𝒚 − 𝑿𝒘 2

2 

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝑦 



Ridge Regression 

Linear regression with L2-regularization 

min
𝑤

1

𝑁
𝒚 − 𝑿𝒘 2

2 +𝜆Ω 𝒘  

Ω 𝒘 =
1

2
𝒘 2

2 

Shrinks all variables to zero – reduces variance while introducing bias. 

 

𝒘 = 𝑿𝑇𝑿 + 𝜆𝑰 −1𝑿𝑇𝑦 

𝒘 

𝒘/max (𝒘) 



Lasso (L1-regularized Linear Regression) 

Shorthand for Least Absolute Shrinkage and Selection Operator 

Linear regression with L1-regularization 

min
𝑤

1

𝑁
𝒚 − 𝑿𝒘 2

2+𝜆Ω 𝒘  

Not all variables become zero at the same time – results in variable selection 

 

 

 

Ω 𝒘 = 𝒘 1 
𝒘 

𝒘/max (𝒘) 



L1-Regularization for General Loss 

L1-regularization can be coupled with various types of loss to obtain sparse models  
e.g.) logistic regression, SVM 

min
𝑤
 𝑙(𝑿, 𝒚,𝒘)+𝜆Ω 𝒘  

Ω 𝒘 = 𝒘 1 

How can we then solve for such l1-regularized objectives? 

 

𝑙(𝑿, 𝒚,𝒘) =
1

𝑁
 1− 𝑦𝑖 𝒘

𝑇𝒙𝑖 + log 1 + exp −𝒘𝑇𝒙𝑖  

𝑁

𝑖=1

 

𝒘 1 ≤ 𝜆 



Gradient Descent 

Determine the descent direction as the gradient at the point, determine the step 
size t, and then move to that direction.  

Repeat this process until a stopping criterion is met. 

Cannot be applied to optimization of non-smooth objectives 



Subgradient Method 

Compute a set of gradient, defining the gradient on non-smooth points 

𝑓: 𝑅 → 𝑅, f x = x  

For 𝑥 ≠ 0, the subgradient 𝑔 = 𝑠𝑖𝑔𝑛(𝑥) 

For 𝑥 = 0, subgradient 𝑔 is any element of [-1,1]. 



Subgradient Method 

A vector 𝑔 is a subdifferential of 𝑓 at 𝑥, if 𝑓 𝑦 = 𝑓 𝑥 + 𝑑𝑇 𝑦 − 𝑥 , ∀𝑦 

Suffers from slow convergence, and solutions obtained are usually non-sparse 



Proximal Gradient 

Specifically tailored for regularized optimization problems where 𝑔 𝒘  is 
differentiable but ℎ 𝒘  is a general convex function. 

min
𝒘

𝑔 𝒘 + ℎ 𝒘  

𝒘𝑡+1 = 𝑝𝑟𝑜𝑥 𝒘𝑡 − 𝛼𝛻𝑔 𝒙𝑡  

𝑝𝑟𝑜𝑥 𝒘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘  
1

2
𝒘 − 𝒘∗

2
2 + 𝛼ℎ 𝒘  

The proximal operator, 𝑝𝑟𝑜𝑥 𝒘  should be efficient – closed form solution 
preferred 

Euclidean Projection 

 

Solution obtained by taking 
a gradient step only on g(w) 

 

smooth 

 

smooth or nonsmooth 

 



Proximal Operator for L1-norm regularization 

Iterative soft-thresholding operator – reduce the absolute value of each 
component of 𝒘 by lambda, and if the resulting value is below zero, set it to zero. 

𝑝𝑟𝑜𝑥 𝒘 = 𝑠𝑖𝑔𝑛 𝒘∗ 𝒘∗ − 𝜆 + 

min
𝒘

𝑔 𝒘 + ℎ 𝒘  

ℎ 𝒘 = 𝜆 𝒘 1 

𝒘∗ = 𝒘𝑡 − 𝛼𝛻𝑔 𝒙𝑡  



Coordinate Descent 

Optimize one variable at a time while fixing all others. 

𝒘𝑗
∗ can be obtained by solving for the loss with coordinate j and soft-thresholding 

the solution. 

min
𝑤𝑗

𝛻𝑗𝑓 𝒘𝑡 𝒘𝑗 −𝒘𝑗
𝑡 +

1

2
𝛻𝑗𝑗
2𝑓 𝒘𝑡 𝒘𝑗 −𝒘𝑗

𝑡 + 𝜆 𝒘𝑗  

𝒘𝑗
∗ = 𝑝𝑟𝑜𝑥 𝜆

𝛻𝑗𝑗𝑓
⋅

𝒘j
t −

𝛻𝑗𝑓 𝒘𝑗
𝑡

𝛻𝑗𝑗
2𝑓

 

[Bach et. al] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with Sparsity Inducing Penalties, F & T in Machine Learning, 2012 



Stochastic Subgradient Descent 

Subgradient method using noisy unbiased subgradients for scalable optimization 

 
𝒘𝑡+1 = 𝒘𝑡 − 𝑎𝑡𝑔𝑡  

 
𝐸(𝑔𝑡 𝒘𝑡 = 𝑔𝑡 ∈ 𝜕𝑓 𝒘𝑡  

A random vector is a noisy unbiased subgradient for 𝑓: 𝑅 → 𝑅 at x, if for all z  
𝑓 𝒛 ≥ 𝑓 𝒘 + 𝐸𝑔 𝑇 𝒛 − 𝒘  

Define the optimal value as 𝑓∗ = min {𝑓 𝒘1 , … , 𝑓 𝒘𝑡 } 

 

 
Scales and works well for ML problems 

However, SGD often does not generate sparse solutions for l1-regularized objectives 

gradient direction 
at iteration t 

step size at iteration t 



Regularized Dual Averaging Method 

Consider all past subgradients of the loss and the whole regularization term when 
solving for a regularized objective 

 

 𝒘𝑡+1 = argmin
𝒘

𝒈𝑡 , 𝑤 + Ω 𝒘 +
𝛽𝑡
𝑡
ℎ 𝒘  auxiliary Strongly 

convex function 

Positive sequence - 𝛾 𝑡 

𝑤𝑡+1
𝑖 =  

0,                                                 𝑔𝑡
𝑖 ≤ 𝜆

 −
𝑡

𝛾
𝑔𝑡
𝑖 − 𝜆𝑠𝑖𝑔𝑛 𝑔𝑡

𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

For l1-regularization RDA has a closed form solution 

[Xiao et. al] L. Xiao, Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization, JMLR 2010 

𝒈𝑡 =
𝑡 − 1

𝑡
𝒈𝑡−1 +

1

𝑡
𝒈𝑡 

Average of all gradients over t iterations 



Regularized Dual Averaging Method 

RDA has a convergence rate of 1/ 𝑇 for general convex regularizers. 

 [Xiao et. al] L. Xiao, Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization, JMLR 2010 

RDA obtains sparser solutions compared to those obtained by SGD and 
proximal gradient 

 



Sparse Coding 

Find sparse decomposition of each data instance 𝑥𝑖, using some known dictionary 
atoms  

min
𝜶

1

𝑁
 𝒙𝑖 −𝑫𝜶𝑖 2

2

𝑁

𝑖=1

+ 𝜆Ω 𝜶  

data 
instance 

dictionary 

sparse 
code 

Sparsity-inducing 
regularization  



Sparse Coding and Dictionary Learning 

Find both a sparse decomposition 𝜶𝑖  of each data instance 𝒙𝑖, and the bases 𝑫 

min
𝜶,𝑫

1

𝑁
 𝒙𝑖 −𝑫𝜶𝑖 2

2

𝑁

𝑖=1

+ 𝜆Ω 𝜶  

Can use alternating optimization to solve for each variable at a time. 

data 
instance 

dictionary 

sparse 
code 

Sparsity-inducing 
regularization  



Alternative Sparse Methods 

Use greedy algorithms to directly solve for l0-norm 

min
𝑤

1

𝑁
𝒚 − 𝑿𝒘 2

2 𝑠. 𝑡.  𝒘 0 ≤ 𝜆 

Enforce sparsity by setting the desired number of nonzero variables. 

- Matching Pursuit, Orthogonal Matching Pursuit  

min
𝛼

𝒙 − 𝑫𝜶 2
2 𝑠. 𝑡.  𝜶 0 ≤ 𝜆 



Matching Pursuit 

At each step, select the column that is most correlated with the input  

min
𝛼

𝒙 − 𝑫𝜶 2
2 𝑠. 𝑡.  𝜶 0 ≤ 𝜆 

𝒅𝟏 

𝒅𝟐 

𝒅𝟑 
𝒓 = 𝒙 

𝜶𝟑 

𝒓 

𝜶 ← 0 
𝒓 ← 𝒙 
 
while 𝜶 0 ≤ 𝜆 

 𝒊 ← 𝑎𝑟𝑔𝑚𝑎𝑥 𝑖=1,…,𝑝 𝒅𝑖
𝑇𝒓  

 𝜶𝒊 ← 𝜶𝒊 + 𝒅𝒊
𝑻𝒓  

 𝒓 ← 𝒓 − 𝒅𝒊
𝑻𝒓 𝒅𝒊 

 



Orthogonal Matching Pursuit 

At each step, select the column that helps reduce the objective the most 

All coefficients extracted so far are updated at each step 

min
𝛼

𝒙 − 𝑫𝜶 2
2 𝑠. 𝑡.  𝜶 0 ≤ 𝜆 

 Γ = ∅ 
for 𝑖 = 1,… , 𝜆 do 

 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈Γ𝑐 min
𝛼′

𝒙 − 𝑫𝚪∪ 𝒊 𝜶
′
2

2
 

  Γ ← Γ ∪ 𝑖   

  𝑟 ← 𝐼 − 𝑫Γ 𝑫Γ 
T𝑫Γ 

−1
𝑫Γ
𝑇  𝒙 

  𝛼Γ ← 𝑫Γ 
T𝑫Γ 

−1
𝑫Γ
𝑇 𝒙 



Image Restoration 

Eliminate noise from the original image 

Original Restored 



Image Restoration with Sparse Coding 

Reconstruct the image with sparse combination of learned bases 

Bases 

min
𝜶

1

𝑁
 𝒙𝑖 −𝑫𝜶𝑖 2

2

𝑁

𝑖=1

+ 𝜆 𝜶 1 



Image Inpaiting 

Works with even larger level of noise 

Original Restored 



Self-taught Learning 

Learn a higher-level, more abstract feature for the given feature type (modality) 

m

i

ii

l yx 1

)()( )},{(  },,1{, )()( TyRx ini

l 
k

i

i

ux 1

)( }{  mkRx ni

u  ,)(

Source Target 

[Raina et al.] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007 

 

Transfer learning when source domain is unlabeled and only remotely related to 
the target task – based on the intuition that human learning is largely unsupervised. 



Self-taught Learning with Sparse Coding 

Given unlabeled data x, find good bases b using sparse coding and dictionary 
learning. 

[Raina07] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007 

Natural  
Image 

Handwritten 
Characters 

Edges 

Strokes 

Sparsity  
Regularization Bases  Reconstruction error 

Sparse 
codes 

L2 regularization 



Self-taught Learning with Sparse Coding 

Use alternating optimization - Solve for each variable while fixing the other, and 
alternate the process until convergence (Efficient algorithm introduced in 07)  

[Raina07] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007 

[Lee07] H. Lee, A. Battle, R. Raina, A. Y. Ng, Efficient Sparse Coding Algorithms, NIPS 2007 

Fixed 

1) Fix b and solve for a → L1-regularized least squares problem 

2) Fix a and solve for b → L2-constrained least squares problem 

Fixed 

Alternate Until 
Convergence 



Self-taught Learning with Sparse Coding 

Then reconstruct the examples in the target dataset using the learned bases.  

 

 

 

 

 

 

 

 

Then train a classifier (such as a SVM) over the obtained sparse codes 

[Raina et al.] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007 

 

= 0.8 *                   + 0.3 *                    + 0.5 * 

     xl      =   0.8 *      b
87                 +  0.3 *            b376           

+  0.5 *        b411 

Sparse codes 
Reconstruction  
error 

Bases  



Self-taught Learning with Sparse Coding 

Results show that information gained from unlabeled data is actually useful. 

 

 

 

 

 

 

 

[Raina et al.] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007 

 

Method Accuracy 

Baseline 16% 

PCA 37% 

Sparse coding 47% 

Method Accuracy 

Raw 54.8% 

PCA 54.8% 

Sparse coding 58.5% 

Image Classification Handwritten Character Recognition 



Learning Task Grouping in Multitask Learning 

Allow the learners to selectively share the information across the tasks.  

[Kumar13] A. Kumar, H. Daume III, Learning Task Grouping and Overlap in Multi-Task Learning 

Shared parameter bases 

Task-specific 
sparse weight 

w2 w1 w3 wT 

L2 L1 L3 Lk Latent bases  

… 

k=3 

k=10 

Can discover true support without having to provide the number of groups 



Sparse Feature Encoding 

Soft-Encoding – encodes each feature as a sparse combination of visual words. 

[Wang et. al] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, Locality-Constrained Linear coding for Image Classification, CVPR 2010 



Learning Sparse Filters for a CNN 

Use sparse coding to reduce the number of convolutional kernels 

[Liu et. al] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, Sparse Convolutional Neural Networks, CVPR 2015 



Learning Sparse Weights for a CNN 

Learn sparse network weights to reduce memory usage 

[Collins et. al] M. D. Collins and P. Kohli, Memory Bounded Deep Convolutional Networks, arXiv:1412.1442 



Sparsity regularizations result in learning a model with few nonzero parameters. It is 
beneficial for feature selection, model analysis, and model compression.  

Summary 

 
L1-regularization uses 1-norm for regularization, which enduces sparsity. Since 1-
norm is non-differentiable, we can solve it through optimization methods such as 
subgradient descent, proximal gradient, and regularized dual averaging method. 
 

Sparse coding encodes an input variable as a sparse combination of some bases. It 
is useful for multiple applications such as image restoration and transfer learning.  



Part 2: Structured Sparsity 

• Introduction to Structured Sparsity 

• Group-structured sparsity 

• Block-structured sparsity 

• Optimizing for (2,1)-norm 

• Tree-structured sparsity 

• Graph-structured sparsity 

• Example: Image inpainting with hierarchical dictionary learning 

• Example: Multi-task learning 

• Example: Learning decorrelated attributes  



Structured Sparsity 

Sparsity regularizations that prefer certain structure among the variables over 
others. 

Enables to exploit known structure – e.g.) To reconstruct handwritten characters, 
we can exploit the fact that they form connected components 



(2,1)-norm 

Mixed norm that has 1-norm over 2-norm groups. 

min
𝒘
 𝑙(𝑿, 𝒚,𝒘)+𝜆 𝒘 2,1 

𝒘 2,1 = 𝒘𝑙 2

𝐿

𝑙

 

Used to promote sparsity at group level 

𝑤11 

𝑤21 

𝑤22 

[Yuan et al.] M. Yuan and Y. Lin, Model Selection and Estimation in Regression with Grouped Variables, Journal of Royal Statistics Society, 2006 

2-norm 

1-norm 



Group Sparsity 

Structured sparsity with groups of variables 



Group Sparsity 

Use L2/L1-regularization to select / drop variables in a group 

Used to promote sparsity at group level 

min
𝒘
 𝑙(𝑿, 𝒚,𝒘)+𝜆 𝒘 2,1 

𝒘 2,1 = 𝒘𝑙 2

𝐿

𝑙

 



Group Lasso 

Correlated variables gets selected / dropped at the same time 

min
𝒘

1

𝑁
𝒚 − 𝑿𝒘 2

2+𝜆 𝒘𝑙 2

𝐿

𝑙=1

 



Sparse Group Lasso 

Group lasso does not yield sparsity within a group. All variables selected will have 
non-zero values. 

Use additional l1-regularization to yield sparsity at individual feature level. 

min
𝑤

1

𝑁
𝒚 − 𝑿𝒘 2

2+𝜆1 𝒘𝑙 2

𝐿

𝑙=1

+ 𝜆2 𝒘 1 

𝐺1 𝐺2 𝐺3 

group lasso 

sparse group lasso 



Block Sparsity 

Structured Sparsity on a 2D Grid 



Block Sparsity 

Same as group sparsity applied to a sequence. Group each row or columns using 2-
norm, and apply 1-norm on the groups 

min
𝒘
 𝑙(𝑿, 𝒚,𝒘)+𝜆 𝒘 2,1 

𝒘 2,1 = 𝒘𝑙 2

𝐿

𝑙

 

𝒘2 



Exclusive Lasso 

Promote competition for the features between tasks 

min
𝒘
 𝑙 𝑿, 𝒚,𝒘 +𝜆Ω(𝒘) 

Ω(𝒘) =  𝒘k
j

𝑚

𝑘

2𝑑

𝑗

 

𝒘1 

[Zhou10] Y. Zhou, R. Jin, and S. C. H. Hoi, Exclusive Lasso for Multi-task Feature Selection, AISTAT 2010 

1-norm over the 
parameters for m 
tasks on the same 
feature dimension 

2-norm over the parameter for 
the same task 



Optimization for L2/L1-Regularized Objectives 

(2,1)-norm is nonsmooth. 

𝑝𝑟𝑜𝑥 𝒘 𝑙 =  1 −
𝜆

𝒘𝑙 +

𝒘𝑙 proximal operator   

Regularized dual  
averaging 

Can use proximal gradient and regularized dual averaging method 

𝑤𝑡+1
𝑖 =  

0,                                         𝑖𝑓 𝑔𝑡
𝑖 ≤ 𝜆

 −
1

𝜎
𝑔𝑡
𝑖 − 𝜆𝑠𝑖𝑔𝑛 𝑔𝑡

𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



Block Coordinate Descent 

Optimize a group of variable at a time, while fixing all others. 

The solution 𝒘𝑔
∗  can be obtained through group-soft thresholding 

[Blondel et al.] M. Blondel, K. Seki, K. Uehara, Block Coordinate Descent Algorithms for Large-Scale Sparse Multiclass Classification 

𝒘𝑔
∗ = 𝑝𝑟𝑜𝑥 𝜆

𝐿𝑡

𝒘𝑔 −
1

𝐿𝑡
𝛻𝑔𝑓 𝒘𝑔

𝑡   

𝑝𝑟𝑜𝑥 𝒘 =  1 −
𝜆

𝒘
+

𝒘 



Tree Sparsity 

Structural sparsity on a tree 

If a node is removed, then all its descendant nodes are dropped. 

[Jenatton11a] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010 



Hierarchical Sparsity-Inducing Norm 

Perform group lasso where each group      contains node j and all its descendants. 

[Jenatton11a] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010 



Tree-guided Group Lasso 

Exploit a given tree structure on the output values to recover the true structure in 
the parameters 

[Kim et al.] S. Kim and E. P. Xing, Tree Guided Group Lasso for Multi-Task Regression with Structured Sparsity, ICML 2010 

Idea: use overlapping groups in group lasso 

Tight correlation 

Joint selection 

Weak Correlation 

Separate selection 



 ℎ 𝛽1
𝑗
+ 𝛽2

𝑗
+ 1 − ℎ 𝛽1

𝑗 2
+ 𝛽2

𝑗 2

𝑗

 

Tree-guided Group Lasso 

Promotes sharing and competition between tasks in hierarchical manner. 

L1 regularization – promotes competition 

L2 regularization – promotes sharing 

[Kim et al.] S. Kim and E. P. Xing, Tree Guided Group Lasso for Multi-Task Regression with Structured Sparsity, ICML 2010 

Simplest case where there are only two outputs 

Decides the degree of competition and sharing  



 ℎ2 𝐺𝑣4 + 𝛽3
𝑗

+ 1 − ℎ2 𝛽1
𝑗 2

+ 𝛽2
𝑗 2

+ 𝛽3
𝑗 2

𝑗

 

Tree-guided Group Lasso 

Promotes sharing and competition between tasks in hierarchical manner. 

[Kim et al.] S. Kim and E. P. Xing, Tree Guided Group Lasso for Multi-Task Regression with Structured Sparsity, ICML 2010 

True coefficients Lasso Group lasso Tree-guided Group lasso 

competition sharing 

 ℎ 𝛽1
𝑗
+ 𝛽2

𝑗
+ 1 − ℎ 𝛽1

𝑗 2
+ 𝛽2

𝑗 2

𝑗

 



Graph-Structured Sparsity 

Structured sparsity on a generic graph 

[Hegde15] C. Hegde, P. Indyk, and L. Schmidt, A Nearly-Linear Time Framework for Graph-Structured Sparsity, ICML 2015    



Graph-Guided Fused Lasso 

Use known graph structure among the output to constrain correlated variables 
to have similar parameters 

[Chen et al.] X. Chen, S. Kim, Q. Lin, J. G. Carbonell, E. P. Xing, arXiv:1005.3579 

Fusion penalty sparsity 



Multitask Feature Learning 

u2 u1 u3 uD 

x2 x1 x3 xD 

Keep 

Input visual 
features 

Polar Bear Dalmatian White Spots Leopard 

Feature dimension 

Category 
classifiers 

Attributes 
classifiers 

Latent 
Shared 

Features 

drop 

t1 t2 t3 tT-1 tT 

Assume that there exist some latent shared features that are shared across 
multiple tasks, and learn them. 

[Hwang11a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011 



Multitask Feature Learning 

Given N input features      and label        for each task t, Simultaneously learn the 
transformation      and model parameter      for each class t  

Transformation 
to a shared feature space 

Group Sparsity 
regularization 

1. Learn classifiers on the transformed features in  
shared feature space 

2. Promote a common sparsity pattern in the new parameters 

Prediction 
loss 

nth training example tth classifier Classifier 

[Hwang11a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011 



Sharing features via Sparsity Regularization 
Using group sparsity regularization, enforce each learner to use features that are 
informative across multiple tasks. 

No Sharing 

Sharing 

Compete 

2-norm across tasks 

task 

General Task specific 

[Hwang11a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011 



Convex Multitask Feature Learning 

Trace norm   
(sum of the diagonal entries for a PSD matrix)  

Previous formulation is non-smooth, which makes it challenging to solve. Thus we  
solve an equivalent form instead.→ Replace features with a covariance matrix       that 
measures the relative effectiveness of each dimension 

Model prediction loss in 
the original feature space 

: model parameter for task t, 
on original features. 

: covariance matrix 

[Argyriou08] A. Argyriou, T. Evgeniou and M. Pontil, Convex Multi-Task Feature Learning, Machine Learning, 2008 



Multitask Feature Learning - Result 

[Hwang11a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011 

    Animals with Attributes (AWA) 
30,475 images, 50 classes, 85 attributes 

Outdoor Scene Recognition (OSR) 
2,688 images, 8 classes, 6 attributes 

White Spotted Natural 

Polar bear Dalmatian Leopard 

Cow 

Lion Horse 

Coast Mountain Forest 

Highway Street Tall 
Buildings 

Dataset 

Open 



Multitask Feature Learning - Result 

No sharing-Obj.: Independent SVMs trained on visual features  
No sharing-Attr. : Object recognition on predicted attributes as in [Lampert09]. 

No Sharing (Visual Features) > Attributes-based Prediction 

[Hwang11a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011 



Multitask Feature Learning - Result 
Shared Features (Object & Attributes) > Shared Features (Objects) > No Sharing 

Sharing-Obj.: Multitask Feature Learning on object classifiers  
Sharing-Attr. : Multitask Feature Learning on object + attribute classifiers 

[Hwang11a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011 



Multitask Feature Learning - Result 

Dolphin 

Grizzly Bear 

Ours 

Giant Panda 

Rhinoceros 

More robustness to background clutter from features refined with attributes 

Even when our method fails, it often makes more semantically “close” predictions.  

No Sharing 

Ours 

Predicted object categories Red: incorrect prediction 

Ours 

Cow 

Wolf 

No Sharing 

Ours 

Polar Bear 

Dalmatian 

No Sharing No Sharing 

[Hwang11a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011 



Image Inpainting with Hierarchical Sparse 
Coding 
Use hierarchical sparsity inducing-norm to reconstruct an input image with a 
hierarchy of image patches 

[Jenatton11a] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010 



Hierarchical Sparse Coding 

Use proximal operator to solve for the hierarchical sparsity-inducing norm 

[Jenatton11a] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010 

Problem – No closed form solution exists for group lasso with overlapping groups  



Hierarchical Sparse Coding 

Use primal-dual approach to solve for the dual problem  

[Jenatton11a] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010 

Convex constraints for each vector 𝜉g are separable  

- Can be efficiently solved using block-coordinate ascent 

Primal 

Dual 



Image Inpainting Results 

Hierarchical dictionary learning yields much less reconstruction noise compared to 
flat dictionary learning with flat l1-regularization. 

Noise 50% 90% 

Flat 19.3 72.1 

Hierarchical 18.6 65.9 

L1 Tree-sparsity 

[Jenatton11a] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010 



Decorrelating Visual Semantic Attributes 

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014 

Problem: difficult to distinguish between co-occurring attributes 

Forest animal? Brown? Has ears? Combinations? 
     



Decorrelating Visual Semantic Attributes 

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014 

Motivation: learning correct attributes is crucial for applications such as image 
search and zero-shot learning. 

silver sandals with high heels How to identify a band-tailed pigeon 

 White collar 
 Yellow feet 

 Yellow bill 
 Red breast 

? 

Image search Zero-shot learning 



Decorrelating Visual Semantic Attributes 

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014 

Solution: promote competition between  

Forest animal 

Brown 

     

     

“Compete” 
for features 

+ 



Decorrelating Visual Semantic Attributes 

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014 

Attributes can be grouped into multiple semantic categories  



Decorrelating Visual Semantic Attributes 

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014 

Promote sharing between attributes in the same group, while promoting 
competition for features in different groups 

Promotes feature sharing 
between attributes within a 
same group  

Promotes competition for features support 
between different groups 

Classification loss 



Decorrelating Visual Semantic Attributes 

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014 

Not boxy No eye Not brown 
underparts 

No mouth No ear 

Decorrelation model predicts attributes much better in unusual cases. 



Decorrelating Visual Semantic Attributes 

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014 

Standard 

Ours 

Blue back Brown wing Olive back Crested head 

This model can also accurately localize the part-based attributes. 



SPAMS (SPArse Modeling Software) 

[Mairal et al.] J. Mairal, F. Bach, and J. Ponce, Sparse Modeling for Image and Vision Processing, Foundations and Trends in Computer  
Graphics and Vision, 2014 

A popular optimization toolbox for solving most of the methods introduced in this 
presentation 

 

http://spams-devel.gforge.inria.fr/ 

 

• Implements OMP, Lasso, LARS, coordinate descent and proximal methods for l1-
regularization. 

 

• Provides proximal toolbox for solving l2/l1-reg. , sparse group lasso, tree-
structured regularization, and structured sparsity with overlapping groups. 

 

http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/


Structured sparsity is a kind of sparsity that prefers certain structure among the 
variables, based on some prior knowledge. 

Summary 

 
There are various types of structured sparsity, including group sparsity, block 
sparsity, tree-structured sparsity, and graph-based sparsity. Structured sparsity is 
often enforced as mixed norm regularization, such as (2,1)-norm 
 

Structured sparsity is useful for multiple applications, including multi-task learning, 
and hierarchical dictionary learning for image denoising. 


