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Lecturer Introduction

Works on the intersection between Computer Vision and Machine Learning
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Current Research Interests

Learning Semantics

- How can we learn high-level semantic knowledge from the given visual and
textual data, such that machine’s understanding of the world aligns well with how

we understand the world?

Interactive Learning

- How can we build a learning model such that machines learn from interacting
with humans?

Lifelong Learning

- How can we learn a model that can basically learn forever, while transferring
knowledge obtained at earlier stages to the learning for later ones?



Part 1: General Sparsity

* Background: Optimization

* Regularizations

* Sparsity

 Sparsity-inducing Regularization

* Example: lasso

* Numerical optimization — proximal methods
* Alternative sparse methods

* Example: Image restoration

* Example: Self-taught learning



Background: Mathematical Optimization

Selection of the values that minimize/maximize a given function

minimize f(w) mv\iln fow)

subjectto f;(w) < b;,i =1,..,m st. fi(w) <b;,i=1,..,m
w= Wy, ..,Wy,) optimization variables

fo:R" > R objective function

fi:R*" > R,i=1,..,m constraints function

We want to find the optimal solution w*that has the smallest value of f; among all
vectors that satisfy the constraints.



Background: Convex Functions

f:R™ = R is convex if dom f is a convex set and

fOx+(1-0)y) <6f(x)+(1-060)f(y)

(v, fO)

(x, f ()

— —————local minimum

global minimum

Has a unique global minimum.

f is concave if —f is convex



Regularization

Introduction of bias to better condition the target problem with additional information

mvgn fw) + 1Q(w)

feature label regularization parameter
min [(X,y,w) + 1Q(w)
w

parameter, weight

For machine learning, regularization is often used to prevent overfitting.



Regularization

L2 regularizations, based on 2 norm, is one the most common types of regularizations

wo

ion contour

@ni mY¥or the loss

A
min [(X,y,w) + |lwl|3
w 2

Iwll, = | w?
Wj

N

Shrinks the value of the variables while favoring similar weights among them



Sparsity

We define the LO-psuedonorm as follows:

lwllo = #{i = 1,...,p | w; # 0} LT N

Wy Wy, W3 W4 Wg Wg Wy Wg

This is a measure of how many of the variables are non-zero.

LO-regularization results in learning sparse models, by selecting variables



Why is Sparsity Good?

Feature selection - Identifies features that are truly relevant to the target task.

Stability Scores Path - Mutual incoherence: 86.6
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Useful for high-dimensional learning and data-driven methods



Why is Sparsity Good?

Better Interpretability — The learned model can be better explained in terms of

selected non-zero entries.

| Category |

Ground-truth attributes

Supercategory + learned attributes

An animal that swims, fish, water, new world, small, flippers,
furry, black, brown, tail, ...

A musteline mammal that is quadrapedal, flippers, furry,
ocean

An animal that is smelly, black, stripes, white, tail, furry,
ground, quadrapedal, new world, walks, ...

A musteline mammal that has stripes

An animal that is brown, fast, horns, grazer,
quadrapedal, vegetation, timid, hooves, walks, ...

forest,

A deer that has spots, nestspot, longneck, yellow, hooves

An animal that has horns, brown, big, quadrapedal, new
world, vegetation, grazer, hooves, strong, ground,. ..

A deer that is arctic, stripes, black

Moose
| Equine | N/A An odd-toed ungulate, that 1s lean and active
Primate | N/A An animal, that has hands and bipedal
1%

[Hwang et al.] S. J. Hwang and L. Sigal, A Unified Semantic Embedding

: Relating Taxonomies with Attributes, NIPS 2014




Why is Sparsity Good?

Model compression — With most of the parameters set to zero, sparsity can greatly
reduce the memory and computational requirements.

/1'0 0 50 0 0 0 0 0 \ 8x8 matrix — requires 512 bytes to store in
0w 0 0 U 0 @By O double precision
0 0 0 0 9.0 0 0 0
0 0 6.0 O 0 0 0 0
0 0 0O 70 O 0 0 0
20 0 0 0 0 10.0 0 0
0 0 0 80 O 0 0 0 12 nonzero entries — requires 96 bytes +
\ 0 40 0 0 0O 0 0 12.0) additional memory to store indices.



LO-regularization

Directly solving for LO-regularization is difficult as it should try all possible subsets of
variables.

mvgn (X, y,w) + Allwl]l,

wllo=#{i=1,..,p|w, =0}

Are there more efficient ways to obtain sparse models?



L1 regularization

Convex relaxation of LO regularization.

mvgn L[(X,y,w) + A|lw]|;

As the dimensionality of w increases, the norm ball will have increasingly more
number of corners.

Results in parameter selection



L2- vs L1-regularization

L2 regularization promotes grouping — results in equal weights for correlated features

L1 regularization promotes sparsity — selects few informative features

L2-regularization L1-regularization

© ©
(/ ) N

Q(w) —% w2 aw) = Iwll,




Lp-Norms

General case ||lw||, where p can be any non-negative number

Lp norms with p < 2 promotes sparsity

Lp norms with p > 2 promotes grouping



Example: Linear Regression

Fit a linear model w, that minimizes the residual between the observed and
predicted values

S _ 2
min[ly — Xwil?

w=(XTX)"1xTy

20 -10 10 20 30 40 20 &0



Ridge Regression

Linear regression with L2-regularization

1
min— ||y — Xw||5 +1Q(w)
w N

1
QW) = Wi

w=X"X+AD"1XTy
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Shrinks all variables to zero — reduces variance while introducing bias.




Lasso (L1-regularized Linear Regression)

Shorthand for Least Absolute Shrinkage and Selection Operator

Linear regression with L1-regularization _
Ordinary Lasso

500
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\

1
min— ||y — Xw||5 +1Q(w)
w N
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Q(w) = |[wll, - —
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o
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T T T T T T
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w/max(w)

Not all variables become zero at the same time — results in variable selection



L1-Regularization for General Loss

L1-regularization can be coupled with various types of loss to obtain sparse models
e.g.) logistic regression, SVM

min [(X,y,w) +1Q(w)
w

I(X,y,w) = [(1 = y)wx; +log(1 + exp(~wx)

i

Q(w) = [wlly Iwll; =2

How can we then solve for such |1-regularized objectives?



Gradient Descent

Determine the descent direction as the gradient at the point, determine the step
size t, and then move to that direction.

given a starting point x € dom f.

repeat
1. Az := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := = + tAx.

until stopping criterion is satisfied.

Repeat this process until a stopping criterion is met. /

Cannot be applied to optimization of non-smooth objectives



Subgradient Method

Compute a set of gradient, defining the gradient on non-smooth points

1.5 2.0

fix)
1.0

0.5

-0.5 0.0

f:R—>R,f(X)=|X|_2 o,
For x # 0, the subgradient g = sign(x)

For x = 0, subgradient g is any element of [-1,1].



Subgradient Method

A vector g is a subdifferential of f at x, if f(y) = f(x) + d" (y — x),Vy

Suffers from slow convergence, and solutions obtained are usually non-sparse



Proximal Gradient

Specifically tailored for regularized optimization problems where g(w) is
differentiable but h(w) is a general convex function.

smooth smooth or nonsmooth

mui]n gw) + h(w)

Solution obtained by taking
Wiy = pT'OX(Wt — an (xt)) ai‘radient step only on g(w)

1
prox(w) = argmin,, > lw — w?||5 + ah(w)

Euclidean Projection

The proximal operator, prox(w) should be efficient — closed form solution
preferred



Proximal Operator for L1-norm regularization

Iterative soft-thresholding operator — reduce the absolute value of each
component of w by lambda, and if the resulting value is below zero, set it to zero.

mui]n gw) + h(w)

h(w) = Allwll, I

*

w' = w;—alg(x,)

prox(w) = sign(w*)[[w*| — 1],

(a) soft-thresholding operator, (b) hard-thresholding operator



Coordinate Descent

Optimize one variable at a time while fixing all others.

1
min V; f (w*) (w; — wj) + = V5 f W (w; —wj) + A|w;|
]

(W_t B ij(w})>

J 2
Viit

Wi = prox
7if

w]’-k can be obtained by solving for the loss with coordinate j and soft-thresholding

the solution.

[Bach et. al] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with Sparsity Inducing Penalties, F & T in Machine Learning, 2012



Stochastic Subgradient Descent

Subgradient method using noisy unbiased subgradients for scalable optimization

step size at iteration t

—~— gradient direction

Wt+1 — Wt T atgt at iteration t

E@wo) = g € 9f wo) N\ RN

B3O\

A random vector is a noisy unbiased subgradient for f: R = R at x, if for all z

f@)z=fw)+(EH" (z—-w)

Define the optimal value as f* = min{f (w;), ..., f(w;)}

Scales and works well for ML problems

However, SGD often does not generate sparse solutions for |1-regularized objectives



Regularized Dual Averaging Method

Consider all past subgradients of the loss and the whole regularization term when

solving for a regularized objective
Positive sequence —]/\/f

_ : —_— :Bt iliary Strongl
Wers = argmin{ (g w) + 00) + K hw) e
w
_t—-1 1
g: = T'gt_l + Egt

Average of all gradients over t iterations

0, |g:| <2

_ \/7f (g% _ Agign(gg)) , otherwise

For I11-regularization RDA has a closed form solution

[Xiao et. al] L. Xiao, Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization, JMLR 2010

A

i
Wipq1 =




Regularized Dual Averaging Method

RDA obtains sparser solutions compared to those obtained by SGD and

proximal gradient
A=0.01 A=0.03 A=

K u E - - . . .
TG

wr

RDA "ll' =i i i

wT Ly I -

IPM

w-k

RDA has a convergence rate of 1/+/T for general convex regularizers.

[Xiao et. al] L. Xiao, Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization, JMLR 2010



Sparse Coding

Find sparse decomposition of each data instance x;, using some known dictionary
atoms

K

* > data Sparse Sparsity-inducing
f ================ 1 I = instance code regularization
EEIEEEEmEnaE | (Bl — |B]| (N
V| | EeEEEaEEeEEEAEEE ol | mm— ||xl Da;l13 + 20(a)
ENEREEENEEEE NN = -
| INEEEEEE NN 1P —1
dictionary

A fixed dictionary

D |

=




Sparse Coding and Dictionary Learning

Find both a sparse decomposition «; of each data instance x;, and the bases D

K
[ EEEEEEEEEEEEEEEE
| |

data sparse Sparsity-inducing
instance code regularization

N mm—lexl Da||2 + A0()

dictionary

R EEEEEEEE

A fixed dictionary

D |
04

Can use alternating optimization to solve for each variable at a time.




Alternative Sparse Methods

Use greedy algorithms to directly solve for |0-norm

min—|ly — Xwl||5 s.t. [wllp =1
w N

m;nllx — Da||5 s.t. ||a]lp < A

Enforce sparsity by setting the desired number of nonzero variables.

- Matching Pursuit, Orthogonal Matching Pursuit



Matching Pursuit

At each step, select the column that is most correlated with the input

ménllx — Da||5 s.t. ||a]lp < A

a0
re—Xx

while ||af|, < 1
[ aTgmax{i=1,...,p}|diTr|
a; < a; + d?‘l‘
r<1r-— (d{?‘)dl




Orthogonal Matching Pursuit

At each step, select the column that helps reduce the objective the most
min|lx —Dall; .t [lall, <4

[=0
fori=1,..,A1do

i = argmin;ere {Irolfi,n”x — Dru{i}“,”z}
' =T U{i}

T ) YA
7"<—(I—D1"(D1"Dl") DF)x
ar < (D[ Dy )_1DF X

All coefficients extracted so far are updated at each step



Image Restoration

Eliminate noise from the original image

Original Restored



Image Restoration with Sparse Coding

Reconstruct the image with sparse combination of learned bases

1
min—zllxi —Dal? + Alletll
« NL

118NN Gl = o =D
1 ILF"FI!=F— il <




Image Inpaiting

Works with even larger level of noise

a el andRhen with te sea

Original




Self-taught Learning

Transfer learning when source domain is unlabeled and only remotely related to
the target task — based on the intuition that human learning is largely unsupervised.

Source Target

OOH, X0 eRk>>m {0y, X e R y" efl,....T}

Learn a higher-level, more abstract feature for the given feature type (modality)

[Raina et al.] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007



Self-taught Learning with Sparse Coding

Given unlabeled data x, find good bases b using sparse coding and dictionary

learning. Sparsity
Reconstruction error Bases Regularization L2 regularization
: i D (%) i
min (|20 — 3 allby| +6Z||a< I sl <1vjel,.
i
Natural Edges
Image

Handwritten cCRnrel

Characters oy O Strokes

[Raina07] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007



Self-taught Learning with Sparse Coding

Use alternating optimization - Solve for each variable while fixing the other, and
alternate the process until convergence (Efficient algorithm introduced in 07)

1) Fix b and solve for a - L1-regularized least squares problem

min ) _[lz{) = @)bgl\ +@Z||a<z Alternyte Unti

Convergence
leed

2) Fix a and solve for b - L2-constrained least squares problem

min Y [z - a; “p j|\ o512 < 1,V5€1,..

F|xe

[Raina07] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007
[Lee07] H. Lee, A. Battle, R. Raina, A. Y. Ng, Efficient Sparse Coding Algorithms, NIPS 2007



Self-taught Learning with Sparse Coding

Then reconstruct the examples in the target dataset using the learned bases.
Reconstruction

error Sparse codes
min > (20— S aPBl[ + 63 (0@ IBIBE< LY €,
@ i Bases i
g!“' = 0.8 * -+0.3* ‘l+o.5* o
S x o = 08% b +03% by +05% by

Then train a classifier (such as a SVM) over the obtained sparse codes

[Raina et al.] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007



Self-taught Learning with Sparse Coding

Results show that information gained from unlabeled data is actually useful.

Image Classification Handwritten Character Recognition

Method Accuracy Method Accuracy

Baseline 16% Raw 54.8%
PCA 37% PCA 54.8%
Sparse coding 47% Sparse coding 58.5%

[Raina et al.] R. Raina, A. Battle, H. Lee, B. Packer, A. Y. Ng, Self-taught Learning: Transfer Learning from Unlabeled Data, ICML 2007



Learning Task Grouping in Multitask Learning

Allow the learners to selectively share the information across the tasks.

k=3

k=10
Shared parameter bases . . . .
SN L s+ pllSIh AL — | —
t (@i, yp)EZ I Task-specific 18: . . | ' ' =
wt — LSt sparse weight 5 10 15 20 25 30

Can discover true support without having to provide the number of groups

[Kumarl3] A. Kumar, H. Daume lll, Learning Task Grouping and Overlap in Multi-Task Learning



Sparse Feature Encoding

Soft-Encoding — encodes each feature as a sparse combination of visual words.

codebook: B={b} j=1. .M codebook: B={b} j=1__m c;)debook: B=(b} -1 m
VQ SC LIC
N N N
arg 111('1:11; |x; — Be;||? arglnén; Ix; — Be;||? 4+ Alle; | 11}%11 ; x; — Be; |2+ Al|d; eyl [?
sit.|cille =1, llcil|p = 1,¢; = 0,Vi st.1'c; =1, ¥i

[Wang et. al] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, Locality-Constrained Linear coding for Image Classification, CVPR 2010



Learning Sparse Filters for a CNN

Use sparse coding to reduce the number of convolutional kernels

) input feature maps
input feature maps

—

= &

convolution kernels

Y

ANV

{

—
—

output feature maps
output feature maps

channel
basis

=
= kernel

&2 basis
=
=

sparse
kernel
matrix

0.57}
0.56

ccuracy

T 0.54f

0.53f

sparsity(% of zeros)

0.55¢

— pca
— sparse
— identity

——pca
——sparse
— identity
2 4 6 8 10 12
iterations x10*

[Liu et. al] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, Sparse Convolutional Neural Networks, CVPR 2015



Learning Sparse Weights for a CNN

Learn sparse network weights to reduce memory usage

MNIST CIFAR-10
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64 KB 256 KB 1 MB 100KB 300KB 500KB
Memory Usage Memory Usage

ImageNet

Model Top-1 Top-5 Memory
Reported [1 1] 59.3% 81.8% -

Caffe Version [YV] 57.28% 80.44% 233 MB
Sparse (ours) 55.60% 80.40% S8 MB

[Collins et. al] M. D. Collins and P. Kohli, Memory Bounded Deep Convolutional Networks, arXiv:1412.1442



summary

Sparsity regularizations result in learning a model with few nonzero parameters. It is
beneficial for feature selection, model analysis, and model compression.

4 N
L1-regularization uses 1-norm for regularization, which enduces sparsity. Since 1-

norm is non-differentiable, we can solve it through optimization methods such as
subgradient descent, proximal gradient, and reqularized dual averaging method.

Sparse coding encodes an input variable as a sparse combination of some bases. It
is useful for multiple applications such as image restoration and transfer learning.




Part 2: Structured Sparsity

* Introduction to Structured Sparsity

e Group-structured sparsity

* Block-structured sparsity

* Optimizing for (2,1)-norm

* Tree-structured sparsity

* Graph-structured sparsity

 Example: Image inpainting with hierarchical dictionary learning
* Example: Multi-task learning

* Example: Learning decorrelated attributes




Structured Sparsity

Sparsity regularizations that prefer certain structure among the variables over
others.

Enables to exploit known structure — e.g.) To reconstruct handwritten characters,
we can exploit the fact that they form connected components



(2,1)-norm

Mixed norm that has 1-norm over 2-norm groups.

min [(X,y,w) + A||w]|; 4
w

L
Iwllzs = ) lIwalla
l

2-norm

1-norm

Used to promote sparsity at group level

[Yuan et al.] M. Yuan and Y. Lin, Model Selection and Estimation in Regression with Grouped Variables, Journal of Royal Statistics Society, 2006



Group Sparsity

Structured sparsity with groups of variables




Group Sparsity

Use L2/L1-regularization to select / drop variables in a group

mui,n (X, y,w)+Allwll;4

-,

L
Iwilzz =) lIwill
l

Used to promote sparsity at group level

HEEEN
!
HEEEN




Group Lasso

Correlated variables gets selected / dropped at the same time

L
1
min-[ly = Xwll3 +2 ) lIwill
w N !
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Sparse Group Lasso

Group lasso does not yield sparsity within a group. All variables selected will have
non-zero values.

L
1
minlly = Xwll3 + 2, ) Iwill, + 2 lIwll
=1

Gy G Gs

group lasso ! w

sparse group lasso . . . .

Use additional I1-regularization to yield sparsity at individual feature level.




Block Sparsity

Structured Sparsity on a 2D Grid




Block Sparsity

Same as group sparsity applied to a sequence. Group each row or columns using 2-
norm, and apply 1-norm on the groups

mui,n (X, y,w)+Allwll; 1

L
w21 = > Iwil,
l




Exclusive Lasso

Promote competition for the features between tasks

min [(X,y,w) + 1Q(w)
w
" -

2-norm over the parameter for H
the same task
d m 2 I

aw) = > () |wi]
(2 ]

1-norm over the

parameters for m
tasks on the same
feature dimension

[Zhou10] Y. Zhou, R. Jin, and S. C. H. Hoi, Exclusive Lasso for Multi-task Feature Selection, AISTAT 2010



Optimization for L2/L1-Regularized Objectives

(2,1)-norm is nonsmooth.

prOXimaI operator prax(W)l = [ 1-— ”wl”] Wy
+
( £ | i
0, [ <A
Regularized dual wi =1 1 f |gt|
averaging 7 (gé — Asign(gé)) , otherwise

Can use proximal gradient and regularized dual averaging method



Block Coordinate Descent

Optimize a group of variable at a time, while fixing all others.

A
prox(w) = [1 —— w
wil],

The solution wj can be obtained through group-soft thresholding

[Blondel et al.] M. Blondel, K. Seki, K. Uehara, Block Coordinate Descent Algorithms for Large-Scale Sparse Multiclass Classification



Tree Sparsity

Structural sparsity on a tree
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If a node is removed, then all its descendant nodes are dropped.

[Jenattonlla] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010



Hierarchical Sparsity-Inducing Norm

Perform group lasso where each group G, contains node j and all its descendants.

QB) =Y wyllByll:

geg

Bi=0 By=P0 Bz=/[s
/84 — {617/84} /65 — {627/63965}
Be = {51, B2, B3, B4, Bs}

[Jenattonl1la] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010



Tree-guided Group Lasso

Exploit a given tree structure on the output values to recover the true structure in
the parameters

A\

Tight correlation

Weak Correlation (Gv5 — {/8{7 /8%: /8% D

Separate selection

Joint selection

(G’U4 — {ﬁ{aﬁ%D

Inputs

G = {B1}) (Gvo = {83}) (Gws = {5]))

Outputs (tasks)
Idea: use overlapping groups in group lasso

[Kim et al.] S. Kim and E. P. Xing, Tree Guided Group Lasso for Multi-Task Regression with Structured Sparsity, ICML 2010



Tree-guided Group Lasso

Promotes sharing and competition between tasks in hierarchical manner.

L1 regularization — promotes competition

: , .2 o\ 2
> il + 16t + = (Ju"+ @) @=mm
j L2 regularization — promotes sharing /\

— 1Al _ I Y
Decides the degree of competition and sharing (Gﬂl o {'31 }) (GLJ B {-'Jj? })

Simplest case where there are only two outputs

[Kim et al.] S. Kim and E. P. Xing, Tree Guided Group Lasso for Multi-Task Regression with Structured Sparsity, ICML 2010



Tree-guided Group Lasso

Promotes sharing and competition between tasks in hierarchical manner.

competition sharing

Z [hz(le' + |,33{D + (1 —hy) (\/(ﬁlj)z n ('sz)z . ([)’3{)2> (G% = {51’52753})
J

 (Gu, = {1.53)
\ /

Z lh(lﬁf |+ 8I]) + 1= h) (J (B)) + (ﬂé’)z)] (Gor = {81}) (Go, ={B3}) (Gus = {33))

True coefficients Lasso Group lasso Tree-guided Group lasso
[Kim et al.] S. Kim and E. P. Xing, Tree Guided Group Lasso for Multi-Task Regression with Structured Sparsity, ICML 2010



Graph-Structured Sparsity

Structured sparsity on a generic graph

e
\ =%

[Hegdel5] C. Hegde, P. Indyk, and L. Schmidt, A Nearly-Linear Time Framework for Graph-Structured Sparsity, ICML 2015
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Graph-Guided Fused Lasso

Use known graph structure among the output to constrain correlated variables
to have similar parameters

Z Z |/83k| +7 Z Z ‘ﬁgm Sgn(rml)BJ”

m,lelE j
sparsity Fusion penalty
SNP j
ACGTTTTACTGTACAATT

Association strength between Association strength between

SNP j and Trait k: f3;; A~ | SNP j and Trait m: Pim

Trait m
Trait &k

[Chen et al.] X. Chen, S. Kim, Q. Lin, J. G. Carbonell, E. P. Xing, arXiv:1005.3579



Multitask Feature Learning

Assume that there exist some latent shared features that are shared across
multiple tasks, and learn them.
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Latent < < Keep drop
Shared U x
Features . el —
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Input visual Feature dimension
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features

[Hwangl1a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011




Multitask Feature Learning

Given N input features = and label Yt for each task t, Simultaneously learn the
transformation [J and model parameter 0, for each class t

t,, classifier Classifier
O U" = argminy: yzﬁ 0.\\Ul" T, ynt)
L

mn

Prediction
loss

Transformation
to a shared feature space

1. Learn classifiers on the transformed features in
shared feature space

2. Promote a common sparsity pattern in the new parameters

[Hwanglla] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011



Sharing features via Sparsity Regularization

Using group sparsity regularization, enforce each learner to use features that are
informative across multiple tasks.

D
H@Hll — Y: y:@?d 2-norm across tasks
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[Hwangl1a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011



Convex Multitask Feature Learning

Previous formulation is non-smooth, which makes it challenging to solve. Thus we
solve an equivalent form instead.—> Replace features with a covariance matrix chat
measures the relative effectiveness of each dimension

W4 : model parameter for task t, Q : covariance matrix
on original features.

Model prediction loss in

W=, ° = argmin E E ((W; X, Ynt) the original feature space
t n

+ 7y Z w; Q" w; + ve Trace(™")
t

Trace norm
(sum of the diagonal entries for a PSD matrix)

[Argyriou08] A. Argyriou, T. Evgeniou and M. Pontil, Convex Multi-Task Feature Learning, Machine Learning, 2008



Multitask Feature Learning - Result

Dataset

Animals with Attributes (AWA)
30,475 images, 50 classes, 85 attributes

fSpotted\

a7 40
”A\ﬁ
v

A

Polar bear

Dalmatian

Outdoor Scene Recognition (OSR)

2,688 images, 8 classes, 6 attributes

4 N
Open

Mountain Forest

[ ‘i
A

Street Tall
Buildings

[Hwanglla] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011



Multitask Feature Learning - Result

No Sharing (Visual Features) > Attributes-based Prediction

Animals with Attributes (50 classes) Qutdoor Scene Recognition (8 classes)
52 86
50 ol
48
46 82r
44 80}
42 9 3
= © LA 5 78
§ 40 : o 3
< <
38" ; e 76
36 o 50.7] _ O
3gf No Sharing—Obj (NSO) 7 O No Sharing-Obj (NSO)
s 9 . . O No Sharing-Attr (NSA) 5 5() . ‘O No Sharing-Atrr (NSA)
10 20 30 40 50 80 10 20 30 40 50 80
% trainining data % trainining data

No sharing-Obj.: Independent SVMs trained on visual features
No sharing-Attr. : Object recognition on predicted attributes as in [Lampert09].

[Hwanglla] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011



Multitask Feature Learning - Result

Shared Features (Object & Attributes) > Shared Features (Objects) > No Sharing

Animals with Attributes (50 classes) Qutdoor Scene Recognition (8 classes)
86

841

82

Accuracy
~J
o]

59,74+
34 No Sharing-0Obj (NSO} No Sharing-Obj (NSO}
§No Sharing-Attr (NSA) 57 §No Sharing-Attr (NSA)
357 " Sharing-Obj. (Ours) " Sharing-Obj. (Ours)
Q Sharmg+Anr (Ours) O Sharmg+Anr (Ours)
3(%0 20 60 5510 20 60
/ tralmnmg data / tralmnmg data

Sharing-Obj.: Multitask Feature Learning on object classifiers
Sharing-Attr. : Multitask Feature Learning on object + attribute classifiers

[Hwangl1a] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011



Multitask Feature Learning - Result

Predicted object categories Red: incorrect prediction

More robustness to background clutter from features refined with attributes

No Sharing  Dolphin P No Sharing Polar Bear

Ours Grizzly Bear R Ours Dalmatian

No Sharing Giant Panda No Sharing  Cow

Ours Rhinoceros Ours Wolf

[Hwanglla] S. J. Hwang, F. Sha, K. Grauman, Sharing Features between Objects and Their Attributes, CVPR 2011



Image Inpainting with Hierarchical Sparse
Coding

Use hierarchical sparsity inducing-norm to reconstruct an input image with a
hierarchy of image patches

[Jenattonlla] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010



Hierarchical Sparse Coding

Use proximal operator to solve for the hierarchical sparsity-inducing norm
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Problem — No closed form solution exists for group lasso with overlapping groups

[Jenattonl1la] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010



Hierarchical Sparse Coding

Use primal-dual approach to solve for the dual problem

Algorithm 1 Block coordinate ascent in the dual

1 2
. fn L Inputs: u € R? and set of groups G.
Prlmal 51/61%@1}) 9 || u VH2 + AQ(V) Outputs: (v, &) (primal-dual solutions).

Initialization: v = u, £ = 0.
while ( maximum number of iterations not reached ) do

1 y 2 for g € G do
max —— u—E 912 — [|luall: = 3
Dual eemeo 3 &l = lullz) O
g€y end for !
g W 9—0 if i d whil
st:V9 €6, ||, < Awgand &5 =01f j ¢ g Ve un Y, g€

Convex constraints for each vector & are separable

- Can be efficiently solved using block-coordinate ascent

[Jenattonl1la] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010



Image Inpainting Results

Hierarchical dictionary learning yields much less reconstruction noise compared to
flat dictionary learning with flat |1-regularization.

Noise 50% 90%
Flat 19.3 72.1
Hierarchical | 18.6 65.9

[Jenattonlla] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal Methods for Sparse Hierarchical Dictionary Learning, ICML 2010



Decorrelating Visual Semantic Attributes

Problem: difficult to distinguish between co-occurring attributes

Forest animal? Brown? Hasears? Combinations?

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014



Decorrelating Visual Semantic Attributes

Motivation: learning correct attributes is crucial for applications such as image
search and zero-shot learning.

silver sandals with high heels E How to identify a band-tailed pigeon

v" White collar
v Yellow feet
v’ Yellow bill

% Red breast

Image search Zero-shot learning

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014



Decorrelating Visual Semantic Attributes

Solution: promote competition between

|

Brown

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014



Decorrelating Visual Semantic Attributes

Attributes can be grouped into multiple semantic categories

Texture Character Color Parts Activity Nutrition Habitat
patches fierce black flippers chewteeth flys fish coastal
spots timid white hands meatteeth hops meat desert
stripes smart blue hooves buckteeth swims plankton bush
furry group Biown pads strainteeth  tunnels vegetation plains
hairless olitarvy . paws horns ikl
amgenion solitary gray loriles. olanes walks insects forest
oughskin nestspot Orange | ifortecte Scgs fast forager fields
domestic red tail bipedal slow grazer jungle
yellow quadrapedal strong hunter mountains
Behavior weak scavenger ocean
& Shape muscle  skimmer ground
i,?: ~1tViSc hibernate big  bulbous stalker water
ae agility e tree
nocturnal = °© small lean
: cave

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014



Decorrelating Visual Semantic Attributes

Promote sharing between attributes in the same group, while promoting
competition for features in different groups

groups learning individually using group information
furry T - | | <
Sl " ksl ©
siky  IIIIIHTIEEEE =/ | |
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feature dimensions feature dimensions

. Sy Promotes feature sharing
argiii L( 1 |X7 Y) +§ : E : de ||2 between attributes within a
w
d [

same group

Classification loss Promotes competition for features support
between different groups

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014



Decorrelating Visual Semantic Attributes

Decorrelation model predicts attributes much better in unusual cases.

3 ey
T

Not brown Noeye Notboxy Nomouth  Noear
underparts

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014



Decorrelating Visual Semantic Attributes

This model can also accurately localize the part-based attributes.

Blue back Brown wing Olive back Crested head

Standard

Ours

[Jayaraman et al.] D. Jayaraman, F. Sha, and K. Grauman, Decorrelating Visual Attributes by Resisting Urge to Share, CVPR 2014



SPAMS (SPArse Modeling Software)

A popular optimization toolbox for solving most of the methods introduced in this
presentation

http://spams-devel.gforge.inria.fr/

* Implements OMP, Lasso, LARS, coordinate descent and proximal methods for |1-
regularization.

* Provides proximal toolbox for solving 12/11-reg. , sparse group lasso, tree-
structured regularization, and structured sparsity with overlapping groups.

[Mairal et al.] J. Mairal, F. Bach, and J. Ponce, Sparse Modeling for Image and Vision Processing, Foundations and Trends in Computer
Graphics and Vision, 2014


http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/

summary

Structured sparsity is a kind of sparsity that prefers certain structure among the
variables, based on some prior knowledge.

4 N
There are various types of structured sparsity, including group sparsity, block

sparsity, tree-structured sparsity, and graph-based sparsity. Structured sparsity is
often enforced as mixed norm regularization, such as (2,1)-norm

)

Structured sparsity is useful for multiple applications, including multi-task learning,
and hierarchical dictionary learning for image denoising.




